IT-Reviews    

МАТЕМАТИЧЕСКАЯ МОДЕЛЬ ОРГАНИЗАЦИИ ЛИЧНОСТНО-ОРИЕНТИРОВАННОГО ОБУЧЕНИЯ УЧАЩИХСЯ НА ГИПЕРГРАФАХ

c78089d0 Источник:
Омельченко Г.Г. Салпагаров С.И. В настоящей статье представлена многокритериальная математическая модель организации личностно-ориентированного обучения учащихся. Построена экстремальная модель на языке теории гиперграфов. Статья в формате PDF 120 KB

Цели и задачи современного образования, положенные в основу концепции личностно-ориентированного обучения школьников, направлены на разрешение противоречий между базой знаний, умений и навыков, которые закладывает традиционная школа, и постоянно меняющимися требованиями, предъявляемыми к личности современными общественно-экономическими отношениями. Возникающие противоречия между уникальностью каждой личности и авторитарной методикой обучения с её набором педагогических штампов усиливают направленность школьного образования на его гуманизацию, на формирование личности ученика как наивысшей ценности. Изменения в целевых установках общеобразовательной школы, ориентация на создание оптимальных условий для развития творческого потенциала ребёнка с учётом его индивидуальных особенностей определили тему данной работы.

На пути реализации личностно-ориентированного обучения администрацией школы и педагогическим коллективом решается множество задач. Одной из них является задача оптимального назначения учителей-предметников в классы. Решение этой задачи особенно важно при переходе параллели классов из начальной в общеобразовательную школу.

В конце учебного года учителем и школьным психологом с помощью анкетирования, тестов и итоговых оценок проводится диагностика обучаемости, обученности, а также способности учащихся самостоятельно учиться, которая выражается показателем эффективности самостоятельной умственной деятельности. Полученные при этом результаты каждой диагностики классов заносятся в таблицу, что позволит учителю в дальнейшем наиболее целесообразно спланировать свою работу с классом по формированию необходимых знаний, умений и навыков по предмету, включая самоконтроль и самоуправление развитием. Более того, совокупность всех результатов диагностики позволяет ставить вопрос о наиболее целесообразном распределении учителей по классам рассматриваемой параллели с учетом их профессионального мастерства.

Исходными данными для построения математической модели организации личностно-ориентированного обучения в школе являются:

 - множество учителей, назначаемых в классы данной параллели.

 - множество современных педагогических технологий обучения [1]. Например, технология модульного обучения, интегральная технология, технология обучения с применением глобальных информационных сетей, технология уровневой дифференциации и методики диагностического целеполагания.

 - множество классов данной параллели. Классы на основании результатов проведённых тестов отнесены к одному из уровней  сформированности учебно-организационных умений. Множество этих уровней  определяется следующим образом:  - у учащихся отсутствует мотивация учебной деятельности;  - учащиеся работают на репродуктивном уровне;  - учащиеся работают на конструктивном уровне;  - учащиеся работают на творческом уровне.

Сформулируем следующую задачу. В каждый класс  требуется назначить одного из учителей , рекомендуя ему использовать в процессе обучения одну из технологий  с учетом психолого-педагогических характеристик этого класса. Результатом такого назначения должно стать повышение уровня мотивации учебной деятельности, эффективности обучения в школе, повышение уровня обученности и самостоятельной умственной деятельности учащихся.

В математической постановке задачи используются следующие понятия и обозначения теории гиперграфов [2]:  - гиперграф с множеством вершин  и множеством рёбер ; рёбра  представляют собой подмножества множества V, т.е. . Если каждое ребро  гиперграфа G состоит из  вершин, то гиперграф G называют -однородным. При  этот гиперграф G является 3-однородным; 3-однородный гиперграф G называется 3-дольным, если множество вершин V разбито на три подмножества VS,  так, что в каждом ребре  его вершины принадлежат различным долям, т.е. , . В этом случае гиперграф G будем обозначать через .

В гиперграфе  звездой называется такая его часть , , в которой любые ребра  пересекаются в одной и той же вершине , называемой центром звезды, т.е. мощность , и не пересекаются ни в какой вершине . Звезда называется простой, если всякая пара ребер  пересекается только в одной вершине . Степенью звезды называют число рёбер в ней.

В рассматриваемой задаче для данного гиперграфа  выполняются следующие условия:

1) в каждом ребре  выделена пара вершин , называемых концевыми для этого ребра;

2) вершины  являются внутренними вершинами, и множество V2 состоит из непустых попарно непересекающихся множеств , , причем каждый элемент  однозначно соответствует некоторой технологии ;

3) концевые вершины  являются висячими вершинами;

4) для каждой вершины  из V1 указано число  такое, что принадлежащая допустимому покрытию звезда с центром в вершине  имеет степень  и при этом выполняется равенство .

Если в подгиперграфе  гиперграфа  каждая компонента связности [2] является звездой с центром в некоторой вершине , то  называем покрытием гиперграфа звездами.

Математическая модель рассматриваемой в настоящей работе задачи базируется на 3-дольном 3-однородном гиперграфе , который строится следующим образом. Вершины первой доли, т.е. , взаимно однозначно соответствуют элементам множества учителей U. Каждой вершине , соответствующей учителю , приписано число , определяемое нагрузкой учителя, а именно количеством классов рассматриваемой параллели, в которых данный учитель будет работать. Каждая вершина второй доли  однозначно соответствует некоторому элементу из множества технологий обучения T. Вершины третьей доли  взаимно однозначно соответствуют элементам множества классов K. Для построения множества рёбер  рассматриваем всевозможные тройки вершин  такие, что , , . Всякую такую тройку называем допустимой, если учитель  может вести занятия в классе , используя технологию обучения . Множество всех рёбер  определяется как множество всех допустимых троек , , .

Для определенных параметров ,  в гиперграфе  допустимым решением рассматриваемой задачи является всякий такой его подгиперграф , , , в котором каждая компонента связности представляет собой простую звезду степени  с центром . Через  обозначим множество всех допустимых решений (МДР) задачи покрытия гиперграфа G звездами.

Каждому ребру  гиперграфа  приписаны три веса , которые означают следующее:  - ожидаемое изменение коэффициента мотивации учебно-познавательной деятельности учащихся класса (в %) в случае, когда учитель, представленный вершиной , назначен в класс, представленный вершиной  с использованием технологии обучения, представленной вершиной ;  - ожидаемое изменение (в том же случае) коэффициента обученности учащихся класса (в %);  - ожидаемое изменение показателя эффективности активной самостоятельной умственной деятельности учащихся (в %) в этом же случае.

Качество допустимых решений этой задачи  оценивается с помощью векторной целевой функции (ВЦФ)

                        (1)

где  - критерий вида , , что означает ожидаемый уровень мотивации учебно-познавательной деятельности учащихся класса параллели, находящихся на самом низком уровне сформированности учебно-организационных умений;  и  - критерии вида   

 

где критерий  означает суммарное изменение ожидаемого уровня обученности учащихся всей параллели классов по предмету, а критерий  - суммарное изменение ожидаемого уровня активной самостоятельной умственной деятельности учащихся всех классов параллели.

ВЦФ вида (1) определяет в МДР  паретовское множество (ПМ) , состоящее из паретовских оптимумов (ПО)  [3]. В случае, если одинаковые по значению ВЦФ решения  считаются эквивалентными (неразличимыми), то из ПМ  выделяется полное множество альтернатив (ПМА) . ПМА  представляет собой максимальную систему векторно-несравнимых ПО из , .

Наиболее целесообразное решение выбирается из ПМА с помощью процедур теории выбора и принятия решений [4].

Литература

  1. Беспалько В.П. Педагогика и прогрессивные технологии обучения. 1995. М.: Педагогика. 98 с.
  2. Емеличев В.А., Мельников О.И., Сарванов В.И., Тышкевич Р.И. Лекции по теории графов. 1990. М.: Наука. 384 с.
  3. Емеличев В.А., Перепелица В.А.//Дискретная математика. 1994. Т. 6. вып.1. С. 3.
  4. Ларичев О.И. Наука и искусство принятия решения. 1979. М.: Наука. 200 с.



Отзывы (через Facebook):

Оставить отзыв с помощью аккаунта FaceBook:

ГЛОБАЛИЗАЦИЯ И ЕЕ ВЛИЯНИЕ НА КУЛЬТУРНЫЕ ПРОЦЕССЫ

Статья в формате PDF 180 KB...

22 10 2020 0:36:56

Взаимодействие науки и технологии

Статья в формате PDF 267 KB...

21 10 2020 1:37:38

ЗАКОН ВЕКОВОГО СМЕЩЕНИЯ ПЛАНЕТ

Статья в формате PDF 127 KB...

20 10 2020 1:23:40

ЭКОЛОГИЯ ГОРОДА

Статья в формате PDF 84 KB...

17 10 2020 13:28:30

Договор купли продажи

Статья в формате PDF 103 KB...

16 10 2020 23:49:58

МОДЕЛИ ЭВОЛЮЦИОННОЙ ЭКОЛОГИИ ДЛЯ ЦЕЛЕЙ КАРТОГРАФИИ

Статья в формате PDF 103 KB...

11 10 2020 21:23:59

ТЕХНОЛОГИИ БИЗНЕСА ПРИ ОЦЕНКЕ ХОЗЯЙСТВЕННЫХ СВЯЗЕЙ

Статья в формате PDF 256 KB...

02 10 2020 11:39:54

ХАРАКТЕРНЫЕ ОБЛАСТИ ПОДВИЖНОЙ ПЛОСКОСТИ

Статья в формате PDF 944 KB...

30 09 2020 10:11:38

АНАТОМИЯ ПОЯСНИЧНЫХ СТВОЛОВ БЕЛОЙ КРЫСЫ

Статья в формате PDF 115 KB...

26 09 2020 17:15:29

ПРОБЛЕМА ПОЛУЧЕНИЯ ВЫСОКОКАЧЕСТВЕННОГО ФАРФОРА

Статья в формате PDF 113 KB...

20 09 2020 23:27:59

К ВОПРОСУ О МОДЕРНИЗАЦИИ РЕАЛЬНОГОСЕКТОРА ЭКОНОМИКИ РОССИИ

В статье рассматриваются теоретические и практические вопросы модернизации реального сектора экономики России. Исследуются факторы и условия, доказывающие необходимость коренных преобразований в базовых отраслях общественного производства. Раскрываются особенности функционирования реального сектора экономики в рыночных условиях современной социально-экономической системы России. Показывается роль научно-технического прогресса в формировании инновационной модели воспроизводства. Обоснована необходимость проведения действенной государственной промышленной и инновационной политики с целью создания целостной и эффективной национальной инновационной системы; создания системы экономических стимулов для производителей при вовлечении в гражданско-правовой оборот результатов интеллектуальной деятельности и обеспечения государственной поддержки дальнейшего развития национальной инновационной инфраструктуры. ...

13 09 2020 14:21:35

ОБЩЕБИОЛОГИЧЕСКИЕ АСПЕКТЫ МОРФОФУНКЦИОНАЛЬНОГО СИНТЕЗА ПРИ ИЗУЧЕНИИ НЕРВНОЙ И СЕРДЕЧНО-СОСУДИСТОЙ СИСТЕМ МЛЕКОПИТАЮЩИХ

Авторами проведено комплексное исследование сосудистых и нервных структур всего органокомплекса брюшной полости, что позволило подтвердить общие морфологические закономерности, свойственные млекопитающим отряда хищных, выявить характерные видовые и внутривидовые особенности васкуляризации и иннервации у пушных зверей клеточного содержания. Полученные новые данные о морфологии сосудистых и нервных образований органов брюшной полости млекопитающих являются оригинальными и дают не только полное представление об изученных структурах, но позволяют морфофункционально интерпретировать адаптогенные процессы, протекающие в интегративно-координационных системах организма пушных зверей, находящихся под интенсивным антропогенным воздействием в процессе доместикации. ...

08 09 2020 12:56:24

О НЕКОТОРЫХ ПРОБЛЕМАХ МОЛОДОЙ КАРЕЛЬСКОЙ ПИСЬМЕННОСТИ

Статья посвящена проблемам становления новейшей лексики и орфографии новописьменного карельского языка. В статье отражены современные процессы развития лексикона, а также представлена к решению проблема так называемых послеложных падежей (элатива, аблатива, комитатива, аппроксиматива и терминатива). ...

07 09 2020 11:42:42

ОПЫТ ВОССТАНОВЛЕНИЯ НАРУШЕННЫХ СЕЛЬСКОХОЗЯЙСТВЕННЫХ УГОДИЙ

Приводятся результаты исследования восстановления пашен, заброшенных при развитии негативных криогенных процессов и явлений и деформации поверхности. Этот опыт восстановления может использоваться и на долинных сельскохозяйственных угодьях, где распространены близкозалегающие подземные льды, вызывающие деформацию поверхности при мелиоративных воздействиях. ...

05 09 2020 19:15:35

АКТУАЛЬНОСТЬ ЭКОЛОГИЧЕСКОГО ОБРАЗОВАНИЯ

Статья в формате PDF 129 KB...

04 09 2020 9:37:11

О ПРОБЛЕМЕ ПОДРОСТКОВОЙ НАРКОМАНИИ В РОССИИ

Применение большого спектра фармакологических препаратов, как природного происхождения, так и синтезированных требует создания стабильных условий, которые необходимы лечащему врачу при проведении все более усложняющихся ступеней вмешательства человека взаимодействие среды и живого организма. Неизбежным следствием применения лекарственных препаратов без учета механизма действия на структурно-функциональные свойства мембранных взаимодействий, является развитие побочных реакций, отличающихся по своей природе, тяжести клинических проявлений и скорости нарастания. ...

02 09 2020 3:28:36

ФОРМА И ТОПОГРАФИЯ ДВЕНАДЦАТИПЕРСТНОЙ КИШКИ У МОРСКОЙ СВИНКИ

Двенадцатиперстная кишка у морской свинки имеет полукольцевидную форму и четыре части (луковица, краниальная, нисходящая и каудальная), в отличие от человека и белой крысы, очень сильно вытянута и согнута с образованием двух V-образных петель. ...

31 08 2020 1:33:41

СОВРЕМЕННЫЕ ПРЕДСТАВЛЕНИЯ О ВОЗМОЖНЫХ МЕХАНИЗМАХ СРЫВА ИММУНОЛОГИЧЕСКОЙ ТОЛЕРАНТНОСТИ МАТЕРИ ПО ОТНОШЕНИЮ К АНТИГЕНАМ ПЛОДА КАК ВЕДУЩЕГО ФАКТОРА ИММУНОАЛЛЕРГИЧЕСКОГО ПРОИСХОЖДЕНИЯ ГЕСТОЗА. СООБЩЕНИЕ 2. О РОЛИ НАРУШЕНИЯ ПРОДУКЦИИ ПЛАЦЕНТОЙ ИММУНОСУПРЕССИР

В обзоре изложены современные представления об этиологии и патогенезе гестоза. Показано значение как генетически детерминированного, так и обусловленного развитием воспалительного процесса гениталий повышения проницаемости маточно-плацентарного барьера для антигенов плода. Рассмотрена роль иммунокомплексной патологии как пускового механизма в развитии гестоза, значение нарушения продукции плацентой белков беременности и цитокинов с иммуносупрессивным действием при осложненном течении беременности. ...

26 08 2020 13:56:58

ЭКОЛОГИЯ СИБИРСКОГО РЕГИОНА: К ИСТОРИИ ПРОБЛЕМЫ

Статья в формате PDF 179 KB...

22 08 2020 11:23:35

МЕТОДОЛОГИЯ ПРОГНОЗИРОВАНИЯ ЭКОНОМИЧЕСКОГО ПОТЕНЦИАЛА РЕГИОНА

Статья посвящена авторской методологии прогнозирования экономического потенциала региона на примере Краснодарского края. В ходе научных исследований был разработан оригинальный математический аппарат, позволяющий оценить основные экономические показатели региона, который применяется для социально-экономического прогноза региона на текущий и перспективный периоды. Описательная часть содержит основные подходы и этапы эффективного экономического прогнозирования региона. ...

21 08 2020 22:42:20

СОВРЕМЕННЫЕ ТЕНДЕНЦИИ В БАНКОВСКОМ ДЕЛЕ

Статья в формате PDF 256 KB...

20 08 2020 12:33:40

ИССЛЕДОВАНИЕ ОНКОЛОГИИ

Статья в формате PDF 379 KB...

19 08 2020 13:28:18

Американский студенческий сленг начала 21 века

Статья в формате PDF 249 KB...

16 08 2020 22:20:38

К ТЕОРИИ ВИНТОВОГО ПРЕОБРАЗОВАТЕЛЯ СИЛ

Статья в формате PDF 376 KB...

09 08 2020 15:48:47

ВОЛГИН ВАСИЛИЙ ИЛЬИЧ

Статья в формате PDF 220 KB...

06 08 2020 23:27:35

О НЕКОТОРЫХ АКТУАЛЬНЫХ ПРОБЛЕМАХ В ОБУЧЕНИИ ФИЗИКЕ

Статья в формате PDF 112 KB...

19 07 2020 4:19:21

ХОРУНЖИН ВЛАДИМИР СТЕПАНОВИЧ

Статья в формате PDF 174 KB...

13 07 2020 17:20:43

СПОСОБ ПЛАЗМЕННОЙ СВАРКИ НА ПЕРЕМЕННОМ ТОКЕ

Статья посвящена решению проблемы сварки металлов, имеющих на поверхности тугоплавкие окисные пленки. Были проведены исследования дугового разряда обратной полярности, горящий между соплом плазменной горелки и изделием, возбуждаемый и стабилизируемый с помощью факела плазмы, в ходе экспериментов были получены сваренные образцы из цветных металлов и алюминия. ...

10 07 2020 1:59:26

ТЕОРИЯ ДОУ

Статья в формате PDF 424 KB...

28 06 2020 16:16:13

НЕОПРЕДЕЛЕННОСТЬ ВИДА 0/0

Статья в формате PDF 459 KB...

25 06 2020 12:35:39

ФОРМИРОВАНИЕ МОТИВАЦИЙ В ПРОЦЕССЕ ОБУЧЕНИЯ К ЗДОРОВОМУ ОБРАЗУ ЖИЗНИ

В работе сформулированы принципы валеологического мировоззрения как образца устремлений, выполняющих ориентационную, нормирующую, прогностическую функции в отношении здоровья и здорового образа жизни. ...

21 06 2020 21:36:27

ГРЕХОПАДЕНИЕ В КОНТЕКСТЕ ПСИХОАНАЛИЗА

Статья в формате PDF 92 KB...

20 06 2020 14:45:18

БИОТЕХНИЧЕСКИЙ ЗАКОН И ВИДЫ ФАКТОРНЫХ СВЯЗЕЙ

Статья в формате PDF 215 KB...

16 06 2020 10:14:53

ЗНАЧЕНИЕ РЕШЕНИЯ ЗАДАЧ ПРИ ОБУЧЕНИИ ФИЗИКЕ

Статья в формате PDF 312 KB...

14 06 2020 1:46:27

КОГНИТИВНЫЕ И ЛИНГВОКУЛЬТУРОЛОГИЧЕСКИЕ АСПЕКТЫ ИССЛЕДОВАНИЯ КОНЦЕПТОВ ЭПИЧЕСКОГО ФОЛЬКЛОРА

Современный этап развития мирового и отечественного языкознания характеризуется антропоцентрической направленностью лингвистических исследований. Антропоцентризм является одним из фундаментальных свойств человеческого языка, так как взаимосвязь и взаимообусловленность языка и человека очевидна и не может вызывать никаких сомнений. « Идею антропоцентричности языка в настоящее время можно считать общепризнанной: для многих языковых построений представление о человеке выступает в качестве естественной точки отсчета» [1, 5]. Антропоцентрический подход в изучении языка или антропоцентрическая парадигма предполагает анализ человека в языке и языка в человеке. В. А.  Маслова пишет, что «…антропоцентрическая парадигма выводит на первое место человека, а язык считается конституирующий характеристикой человека, его важнейшей составляющей. Человеческий интеллект, как и сам человек, немыслим вне языка и языковой способности как способности к порождению и восприятию речи. Если бы язык не вторгался во все мыслительные процессы, если бы он не был способен создавать новые ментальные пространства, то человек не вышел бы за рамки непосредственно наблюдаемого. Текст, создаваемый человеком, отражает движении человеческой мысли, строит возможные миры, запечатлевая в себе динамику мысли и способы ее представления с помощью средств языка» [1, 8]. ...

12 06 2020 0:45:52

ОБЩИЙ УХОД ЗА БОЛЬНЫМИ (учебник)

Статья в формате PDF 107 KB...

09 06 2020 4:28:22

СТАТИСТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ФУНКЦИОНАЛЬНОГО СОСТОЯНИЯ ПРИ ХРОНИЧЕСКОЙ СЕРДЕЧНОЙ НЕДОСТАТОЧНОСТИ У БОЛЬНЫХ ИШЕМИЧЕСКОЙ БОЛЕЗНЬЮ СЕРДЦА

В статье описываются математические модели в виде уравнения регрессии, которое позволяет по клиническим признакам хронической сердечной недостаточности со статистической достоверностью предсказать результаты 6-минутного теста. ...

30 05 2020 19:14:40

Еще:
Обзоры -1 :: Обзоры -2 :: Обзоры -3 :: Обзоры -4 :: Обзоры -5 :: Обзоры -6 :: Обзоры -7 :: Обзоры -8 :: Обзоры -9 :: Обзоры -10 :: Обзоры -11 ::

Последовательность подготовки научной работы может быть такой:

Выбор темы. Это важный этап. Во-первых, тема должна быть интересна не только вам, но и большинству слушателей, которым вы будете её докладывать, чтобы вы видели заинтересованность в их глазах, а не откровенную скуку.

Выбор целей и задач своей научной работы. То есть, нужно сузить тему. Например, тема: «Грудное вскармливание», сужение темы: «Грудное вскармливание среди студенток нашего ВУЗа». И если общая тема мало кому интересна, то суженная до рамок собственного института или университета, она становится интересной практически для всех слушателей. Целью может стать: «Содействие оптимальным условиям вскармливания грудью детей студентов нашего ВУЗа», а задачей — доказать, что специальные условия, созданные для кормящих студенток, не помешают их успеваемости, но уменьшат количество пропусков, академических отпусков и способствуют выращиванию здоровых детей — нашего будущего. Понятно, что эта тема подходит для студентов медицинских и педагогических ВУЗов, но и в других учебных учреждениях можно найти темы, интересные всем.

Разработать методы исследования и сбора информации. В случае с естественным вскармливанием, скорее всего, это будет анкетирование студенток, имеющих детей.

Систематизировать материал и подготовить презентацию.

Подготовиться к выступлению.

Выступить и получить: награду, удовольствие и опыт, чтобы в следующем году выступить ещё лучше и сорвать шквал аплодисментов, стать узнаваемым, а значит — более конкурентоспособным!