IT-Reviews    

УРАВНЕНИЯ ДЛЯ КООРДИНАЦИОННОГО ЧИСЛА В НЕУПОРЯДОЧЕНЫХ СИСТЕМАХ

Хархардин А.Н. Топчиев А.И. Приводится вывод уравнений для расчета координационного числа в неупорядоченных конденсированных системах: в зернистых материалах, в композитах с твердой монодисперсной фазой, в жидких металлах и при критическом состоянии вещества. В выводах этих уравнений используется основной их топологический параметр – средняя плотность упаковки структурных элементов дискретности. Знание координационного числа элементов дискретности неупорядоченных систем необходимо для определения многих их свойств: физических, механических, реологических и др., совокупность которых вытекает из их топологических состояний: твердого, псевдотвердого, жидкого, псевдожидкого и критического. Статья в формате PDF 161 KB Геометрия ближайшего окружения частиц зернистых (дисперсных) материалов и плотность их упаковки определяют топологию неупорядоченных систем. В композиционных материалах в результате действия сил поверхностного натяжения между жидкой и твердой дисперсной фазой плотность упаковки ее частиц становится больше, чем в сухом дисперсном слое. Изменение плотности упаковки атомов при плавлении кристаллических веществ, например, металлов зависит кроме всего прочего от коэффициента компактности их кристаллической решетки. Если он меньше, чем плотность случайной (произвольной) упаковки невзаимодействующих твердых шаров (η=0,6403), то плотность упаковки атомов в жидкой фазе возрастает. Если он больше этой величины, как для большинства металлов, то плотность упаковки атомов, например, в жидких металлах зависит от температуры, межатомного взаимодействия, наличия жидкого полиморфизма или способности их к кластерообразованию. Число ближайшего окружения частицы в дискретной системе называется координационным числом. Структурная топология определяет координацию этих частиц в трехмерном пространстве координационным числом и плотностью их упаковки в системе. Структурная топология неупорядоченных систем - это наука о составе, уровнях организации структур топологического беспорядка и свойствах систем, наделенных дискретностью. Дискретность неупорядоченных систем может проявляться как на микроуровне в виде атомов, молекул и их ассоциаций, флуктуаций плотности, кластеров, магнитных доменов и пр., так и на макроуровне в виде флокул, агрегаций, блоков, высокоплотных образований и пр. Так, при измельчении зернистого материала возрастает электростатическое взаимодействие частиц, изменяется структура дисперсного слоя в результате уменьшения плотности их упаковки и координационного числа, вплоть до критического состояния, когда наступает сухое агрегирование микрочастиц. При дальнейшем их измельчении проявляются аномальные физические - структурные, магнитные и электрические свойства. Введение большого количества таких наполнителей в композиты и их переработка в изделия затрудняется. Следовательно, на этой стадии измельчения изменяется уровень организации структуры как твердой дисперсной фазы в слое, так и в наполненных композитах. Знание координационного числа в зернистом слое, твердой дисперсной фазы в композитах, в жидкостях требуется в теории композиционных материалов с электропроводящим дисперсным наполнителем, в теории жидкости и в практике металлургических процессов для расчета вязкости и термодинамических характеристик жидких металлов. Метод определения координационного числа по " радиальной функции распределения плотности" [1] - трудоемкий и показывает наибольшее его значение в первом максимуме этой кривой, который может соответствовать локальным скоплениям атомов, кластерным или плотным жидким полиморфным образованиям.

Наш приближенный метод основан на использовании рекуррентного уравнения для фазовых, топологических переходов вещества, полученного при математическом описании аэро и гидродинамики зернистого слоя в точках псевдоожижения - кипения в зависимости от порозрости неподвижного слоя. Это уравнение имеет вид [2]:

 

где η1,η - плотность упаковки частиц в псевдофазах, в близи (до и после) топологического перехода, К - гидродинамический параметр проницаемости слоя, так называемая "константа" Козени - Кармана:

Покажем, что знаменатель в скобках выражения (1) представляет собой координационное  число для невзаимодействующих частиц со случайной упаковкой в слое. Преобразуем уравнение (1) для точки ФТП типа "жидкость газ", "твердая дисперсная фаза газ", "псевдожидкая  фаза -газ" при критическом состоянии вещества к виду:

V - V1 = V / 3ln(2K)

где V, V1 - объем менее плотной и более плотной фазы в точке ФТП

Подставляя правую часть этого выражения в уравнение Менделеева-Клапейрона-Клаузиуса, получим:

 

где Т, q - температура и скрытая теплота ФТП.

Преобразуем это выражение к виду полагая что для псевдоожиженного слоя невзаимодействующих частиц в точке ФТП (в точке псевдоожижения - кипения слоя) выполняется равенство идеальных газов РV=RT, где параметры Р и V могут быть определены давлением псевдоожижающего агента и объемом псевдоожиженного слоя:

Интегрирование этого выражения в предположении, что скрытая теплота фазотопологического перехода q не зависит от температуры, дает

Преобразуем это выражение к виду

Выражение в скобках левой части этого равенства примем за коэффициент Z для конденсированной фазы (псевдотвердой, жидкой и псевдожидкой), а при критическом состоянии вещества он представляет собой критический коэффициент, равный по величине координационному числу атомов в плотной фазе флуктуаций плотности (в псевдожидкой фазе) ZC = RTC / PCVC.Следовательно коэффициент Z в точке ФТП представляет собой координационное число атомов (частиц) в псевдоконденсированной фазе, где RT≠ РV, тогда как в псевдоожиженной системе невзаимодействующих частиц RT=PV. В результате принятых соображений, получим

ZPVlnP = -3qln(2K)±cRT

либо

ZRTlnP = -3qln(2K)±cRT         (2)

Пологая, что q = ±RTlnP и пренебрегая постоянной интегрирования (с=0) для невзаимодействующих частиц монодисперсного слоя и элементов структуры конденсированной фазы, получим:

Z = 3ln (120,754· з51)              (3)

где  η1 - плотность упаковки элементов структуры в более плотной фазе в точке ФТП.

Из этого уравнения при з1 ≥0,4098 ≥Z 1 , что указывает на невозможность существования в природе жидкой конденсированной фазы с плотностью  упаковки з1 < 0,4098  невзаимодействующих элементов ее структуры со случайной их упаковкой (т.е. с топологическим  беспорядком),  а  при з1  ≥0,38337 ≥Z0  для газовой фазы.  Величина ZСК =120,754з51 представляет собою число элементов (частиц) в скоплении вместе с центральным.  Выражение  (3) можно записать в общем виде с учетом силовой константы их взаимодействия k:

Z = kln (120,754· з51), где k =3...4              (4)

Из этого уравнения для невзаимодействующих (k≤ 3) и взаимодействующих элементов структуры (k ≤4) соответственно в псевдожидкой фазе при з1=0,6403...0,6655 получим Z =7,69...8,27 и Z=10,3...11,0 . Величина η=0,6655 получена из уравнения (1) при η1=0,74048. Полагая, что для критического состояния вещества q=-RCTClnPC/3 из выражения (2) получим:

ZС = kСln (120,754· з5ж),                       (5)

где Ж - плотность упаковки атомов в плотной фазе флуктуаций плотности, которая незначительно отличается от величины ее в жидкой фазе при температуре кипения (плавления) вещества.

Для конденсированной жидкой фазы в точке кипения (плавления) вещества и в критической точке выражение (5) можно записать в общем виде:

где с - константа взаимодействия атомов в жидкой  фазе,  с ≤1.  Так  как  при ηж=0,6403...0,6038...0,5255 и с=1 из выражения (6) Zс=4...3,76...3,0; при с=3 Z=12...11,3...9, а при с=2,549 Zс=10,2...9,6...7,65.

Для уравнения (5) определим изменение величины kс в пределах изменения 3 ≤ Z ≤ 4 . Для этого воспользуемся наименьшем значением координационного числа  ZC =10зC = 2,549 для невзаимодействующих элементов псевдофазы:

Коэффициент kс=1,1769 приведем к кратному значению на одно из десяти возможных чисел в первой, во второй и в последующих сферах ближайшего окружения центральной частицы в трехмерном пространстве с увеличением их числа при разрыхлении структуры:

Из этого выражения при ηж≤0,6403 получим широкий спектр стандартных значений Zс, при четных значениях показателя степени n:Zc=2,65…2,74…2,82…2,92…3,02…3,12…3,22…3,33…3,44…3,55…3,67…3,79…3,92…4,05…4,18…, а при η1≤0,6038 – Zc=2,67…2,76…2,85…2,95…3,04…3,15…3,25…3,36…3,47…3,58…3,70…3,82…3,95…4,08…4,2….

Следовательно с уменьшением плотности упаковки частиц в псевдожидкой фазе коэффициент kс понижается, при этом возрастает число частиц в первой сфере ближайшего окружения. При n=10 эти ряды начинаются величинами Zc=3 и Zc=2,67 соответственно.

Коэффициент kс=1,5692 приведем к кратному значению на одно из двенадцати возможных чисел ближайшего окружения центрального атома в трехмерном пространстве с увеличением их числа при разрыхлении структуры:

где n≥0…12 – ряд чисел ближайшего окружения центрального атома в флуктуациях плотности. Из этого выражения при ηж≤0,6403 получим: Zc=2,663…2,765…2,870…2,980… 3,094…3,213…3,335…3,463…3,596…3,733…3,87 6…4,024, а при ηж=0,6038- Zc=2,36…2,45…2,54…2,64…2,75…2,85…2,95…3,07…3,18…3,30…3,43…3,56…3,70 …3,85…3,99…4,14. При n≥6 эти ряды начинаются величинами Zc=3,2 и Zc=2,85 соответственно, а при n=12 Zc=4 и Zc=3,56. При Z=10, что характерно для большинства жидких металлов, это выражение имеет вид:

Если плотность упаковки атомов определяется в жидкой фазе при температуре кипения (плавления) вещества, то в полученные результаты укладываются все значения Zc реальных газов и жидкостей [4]. Так, из уравнения Ван–дер-Вальса Zc=2,67, а для реальных газов Zс находится в пределах от 3,0 до 3,95, причем оно всегда больше 2,67. Невыполнимость уравнения (8) при подстановке в него hс объясняется тем, что в этом и подобных уравнениях согласно (1) используется плотность упаковки атомов в предшествующей более плотной фазе в точке ФТП. Полагаем, что в критической точке устанавливается состояние структуры вещества с регулярной плотностью упаковки сфер трехмерных колебаний атомов с предисторией ее при твердом полиморфном или кристаллическом состоянии, равной укладке атомов в гексагональной или в гранецентрированной (наиболее вероятных) решетках, где η1=0,74048 и Z=12, в тетрагональной (η1=0,6981; Z=10) или в объемно-центрированной (маловероятной) кристаллической решетке (η1=0,6802; Z=8). Вблизи критической точки развитие сильных флуктуаций плотности происходит по причине смены состояния структуры с регулярной укладкой сфер трехмерных колебаний атомов на случайную упаковку атомов. В прямолинейной зависимости координационного числа сфер трехмерных колебаний атомов от плотности их упаковки η1, коэффициенты при η1 становятся одинаковыми в окрестности критической точки. Следовательно, в критической точке ηс=(0,74048…0,6981)×ηсф, где ηсф – плотность упаковки атомов в сферах трехмерных их колебаний.

Второй подход к расчету координационного числа в сыпучих материалах и в твердой дисперсной фазе композитов основан на соответствии Zс=3…4 – критической плотности упаковки частиц на пороге предельного измельчения ηс≤0,2549. Учитывая непрерывность изменения фазотопологического состояния дисперсного слоя и соответствующее ему изменение плотности упаковки в нем частиц при его измельчении, прямолинейная интерполяция этого соответствия на произвольную величину плотности случайной упаковки невзаимодействующих и взаимодействующих частиц приводит к выражениям вида:

В работах российских и зарубежных исследователей структуры зернистого слоя, монодисперсных твердых шариков в слое отмечается один замечательный результат. Структура случайной упаковки твердых сферических частиц в зернистом слое характеризуется перманентностью локальных фрагментов с различной регулярной укладкой в них небольшого числа партикулярных частиц. Типы способов их укладки хорошо известны в кристаллохимии. При равной вероятности этих способов укладки в зернистом слое и соответствующих им координационных чисел, среднее координационное число в нем будет равно: Z= (12+10+8+8+6)/5 =8,8. Для случайной паковки идентичных частиц прямолинейная зависимость координационного числа в зернистом слое до наибольшей плотности их упаковки η1 =0,640289  при Z=8,8 будет иметь вид:

Среднее значение коэффициентов при η1 в уравнениях (9) и (10) дает аналогичный результат при η1 в уравнении (11). Из уравнения (11) при η1=0,574 и η1=0,59 Z=7,89 и Z=8,11. Экспериментальный результат при этом для частиц гранулированной сажи и стальных шариков соответственно равен: Z=7,87 и Z=8,06 [4].

Из уравнения (10) для случайной упаковки взаимодействующих частиц при η1=0,64029 получим Z=10. Преобразуем уравнение (3) для случайной упаковки частиц с учетом сил трения зацепления и заклинивания между ними в зернистом слое и сил адгезионного взаимодействия и вязкости в наполненных композитах до наибольшего значения Z=10 при η1=0,640289 следующим образом:

Отсюда, при η1=0,640289 с=3,602, а выражение для Z имеет вид:

Последний член в этом уравнении представляет собой зависимость коэффициента внутреннего трения зернистого слоя и композитов от η1: fвт=1,2η1, где с=1,2. Так, при η1=0,60…0,65…0,84 fвт=0,72…0,78… 1,0, что хорошо согласуется данными для кварцевого песка различной дисперсности. Для слабовзаимодействующих частиц со случайной их упаковкой в зернистом слое при η1=0,64029 и Z=8,8, при η1=0,6038 и Z=8 выражения, полученные подобно (12) будут имет вид:

Таким образом, для определения коэффициента внутреннего трения сыпучих материалов по формуле fвт=сη1 необходимо найти свободный член к уравнению (9), т.е. коэффициент «с» при Z=8,8 и η1≥0,6038 – для учета сил трения между частицами, а при η1≤0,6038 и Z=8 – для невзаи модействующих частиц округлой формы, либо коэффициент при η1 в уравнении (12) для данной плотности их упаковки в зернистом слое, а в композиционных материалах при Z=10.

Для всех значений Z≤8…10…12 и η≤0,68017…0,69813…0,74048 выражения для упрощенного расчета координационного числа взаимодействующих элементов структуры ме таллов в твердой и в жидкой фазе неупорядоченных систем получим путем преобразования уравнения (9) следующим образом:

Для исходных данных топологических параметров твердой фазы получим соответственно:

В уравнении (15) при Z=12 и η1=0,74048 выделим одну из величин плотности упаковки атомов в твердых металлах следующим образом:

Полученная при этом величина η1=0,726235 совпадает с плотностью упаковки атомов в гранецентрированной γ - полиморфной твердой модификации железа [5]. Вычисление по рекуррентному уравнению (1) при η1=0,726235 дает величину η=0,4722, совпадающей с ошибочной рекомендацией ее η=0,47±0,02 [6] для плотности упаковки атомов большинства жидких металлов. Из уравнения (15) для металлов при η1=0,73764… 0,72624…0,67468…0,66549…0,6505 получим: Z=11,95…11,76…10,93… 10,78…10,54. Первые две из этих величин относятся к твердой полиморфной фазе в точке ФТП. Следовательно уравнение (15) хорошо описывает многие металлы в полиморфных твердых и жидких модификациях, в тройной точке и в точке плавления с наличием жидкого полиморфизма к более плотным ГЦК и ГПУ структурам и кластерообразованию. Незначительное отличие уравнений (9) и (13) указывает на возможный легкий переход объемно-центрированной компактности сфер трехмерных колебаний атомов к случайной их упаковке, на неустойчивость высокотемпературных полиморфных модификаций с объемно-центрированной структурой в жидких металлах. При дальнейшем нагревании они переходят в случайную упаковку атомов, либо в плотнейшие гексагональную или гранецентрированную жидкую модификацию сфер трехмерных колебаний атомов в решетке с увеличением радиуса взаимодействия между ними. При критическом состоянии вещества объемно-центрированная компактность сфер трехмерных колебаний атомов маловероятна, либо совершенно невозможна.Учитывая, что в уравнении (1) выражение вид ln(120,754η15) дает число невзаимодействующих частиц, атомов или сфер их трехмерных колебаний с высокоплотной случайной упаковкой или с регулярной укладкой в фрагментах или в плотной фазе флуктуаций плотности, выражение для критического коэффициента в критической точке и вблизи нее следует записать в виде:

где с – силовая константа взаимодействия атомов, Z – наиболее вероятное число сфер трехмерных колебаний атомов в критической точке, Z=12…10.

Из уравнения (16) для ряда η1 с учетом полиморфизма: 0,74048; 0,73764; 0,72624; 0,710548; 0,70548; 0,6981; 0,68527; 0,6802 при с=1 и Z=12…10 получим ряд значений для Zс: 3,68…3,04; 3,67…3,06; 3,76…3,13; 3,89…3,24; 3,94…3,28; 4,0…3,34; 4,13…3,44; 4,18…3,49. Для дисперсного слоя частиц при Z=7,54 (9), Z=7,94 (4), Z=8,8 (11) согласно уравнению (16) при h1=0,6403 и с=1 получим: Zс=2,94; 3; 3,43; а при Z=10 (12) Zс=3,9. Как следует из результатов расчета, наиболее вероятное координационное число сфер трехмерных колебаний атомов в критической точке Z=10 с послойной гексагональной укладкой их в центре объема системы. В поле сил гравитации оно изменяется от низа к верху объема системы от Z=12 до Z=8. При этом возможно изменение Zс для слабовзаимодействующих элементов структуры: при Z=12 Zс=4,0, при Z=10 Zc=3,34, а при Z=8 Zc=2,67. Так, если среднее координационное число в неупорядоченной системе Z≤8, то для взаимодействующих элементов согласно (12) Z=10, в том числе и для большинства жидких систем и металлов Z=(12+10+8)/3=10 . Преобразуем уравнение (3) для учета взаимодействия (внутреннего трения) элементов структуры в жидкофазных системах путем приведения его к граничным параметрам кристаллических структур и тем самым найдем постоянную интегрирования в уравнении (2). Для граничных условий η1=0,74048 и =12 получим:

Отсюда, уравнение для возможно полного интервала значений Z с данным типом укладки элементов структуры имеем вид:

Последний член в этом уравнении с предистрией регулярной укладки атомов. Для приведения его к произвольной (случайной) упаковке атомов в жидкой фазе преобразуем его аналогичным (12) образом:

 

При η1≥0,4098 и η1≥0,38337 из этого уравнения получим соответственно Z≥2,18 и Z≥1,1, что указывает на число взаимодействующих атомов в газовой фазе. Аналогично получают уравнение для Z при граничных условиях для тетрагональной укладки при Z=10 и η1≥0,6981, для объемно- центрированной укладки при Z=8 и h ≥0,6802:

В полученных выше уравнениях (8, 8а, 8b) согласно выражениям (12) и (18) следует учитывать второй член, определяющий коэффициент внутреннего трения. Тогда полное выражение для критического коэффициента будет иметь вид:

где с=0,7085; 0,957; 1,2 – коэффициенты, характерные для данного типа структуры неупорядоченных систем (полиморфизма, кластеризации и случайной упаковки взаимодействующих элементов); kc=1,016423 – обобщенный коэффициент этого взаимодействия; kc=1,04609 – коэффициент для сильного взаимодействия, а kc=1,03826 – коэффициент для слабовзаимодействующих элементов неупорядоченных систем.

В уравнении (21) показатель n является неизвестной величиной, а величина knc зависит от индивидуальных свойств вещества, которая подлежит определению. Для известных значений Zc показатель n определяется подбором его значения для точного определения коэффициента внутреннего трения в виде:

fВ=cknc·з1                          (22)

Для большинства сыпучих материалов n=0. Так, при kc=1,016423 и с=0,957 из выражения (21) для неона при n=3 Zc=3,34, для аргона при n=8-8,5 Zc=3,47-3,50; для криптона при n=19-20 Zc=3,48-3,54; для ксенона при n=3 Zc=3,074; при kc=1,04609 и n=1 для неона Zc=3,33 (3,33), при n=3-3,5 для аргона Zc=3,49-3,57 (3,49-3,54), при n=7 для криптона Zc=3,50 (3,50), при n=1 для ксенона Zc=3,06 (3,07). Из выражения (21) при kc=1,01642, с=1,2 и n=0 для неона Zc=3,336 (3,33) и ксенона Zc=3,076 (3,07); для аргона при n=2 и kc=1,04609 Zc=3,50 (3,49), а при kc=1,01642 и n=6 Zc=3,53 (3,54), для криптона при n=6 Zc=3,53 (3,50), а при kc=1,01642 и n=16 Zc=3,50 (3,50). В скобках приведены экспериментальные данные.

Поскольку первые члены в уравнениях (17…20) исходят из случайной упаковки невзаимодействующих твердых сферических частиц, то поправка к ним на взаимодействие атомов в жидкой фазе определяется отношением плотности случайной упаковки твердых сфер, полученной из уравнения (1) для жидкой и псевдофазы из плотности их укладки в данной кристаллической решетке или полиморфной модификации, к фактической плотности упаковки атомов в жидкой фазе вещества - η1ж, а поправка ко вторым членам этих уравнений зависит от η1 и ее отклонения от таковой при случайной упаковке. При плавлении металлов жидкий полиморфизм и топологический беспорядок конкурирует в упаковке атомов в жидкой фазе, что приводит к повышению плотности их упаковки при наличии кластерных образований, либо к снижению ее при случайной их упаковке.

Следовательно, в точке плавления вещества при разрыхлении структуры в жидкой фазе в результате увеличения радиуса межмолекулярного взаимодействия получим:

где с – коэффициенты при η1 в уравнениях (18…20) для исходной данной кристаллической структуры; n – показатель, учитывающий влияние жидкого полиморфизма, кластеризации металлов или случайной упаковки атомов: n=0 – с преимуществом жидкого полиморфизма, n=1 – с преимуществом произвольной упаковки атомов в жидкой фазе при с=1,2, с=0,7085 и кластеризации атомов при с=0,957; значения η1 для данного типа кристаллической структуры или жидкой полиморфной модификации вычисляются из уравнения (1).

Приведем примеры расчета координационного числа в структуре жидких инертных газов и щелочных металлов при температуре плавления с учетом перегрева или переохлаждения.

В скобках приведены экспериментальные данные [1]. Данные для hж взяты из работы [1], а в скобках – справочные данные. Таким образом, жидкофазный полиморфизм металлов кластеризацию или случайную упаковку атомов в жидкой фазе можно обнаружить по равенству координационного числа, получаемого из радиальной функции распределения плотности и соответствующего вида одной из приведенных выше расчетных формул. Полученные уравнения для координационного числа в структуре неупорядоченных систем, наделенных дискретностью, позволяют с достаточной точностью вести расчет его величины для жидких металлов, коэффициента внутреннего трения этих систем и проектирование состава композиционных материалов с заданными свойствами.

Литература

  1. Скрышевский А.Ф. Структурный анализ жидкостей и аморфных тел. - М.: Высшая школа, 1980. - 328 с.
  2. Хархардин А.Н. Структурная топология неупорядоченных систем. // Вестник БелГТАСМ. Научно - теорет. ж - л. 2002. №2. - С.14 - 27.
  3. Беляев Н.М. Термодинамика. - Киев:Выща школа, 1987. - С. 36 - 37.
  4. Аэров М.Э., Тодес О.М. Гидравлические и тепловые основы работы аппаратов со стационарным и кипящим зернистым слоем. - Л.: Химия, 1968. - С. 8 - 52.
  5. Ахметов Н.С. Неорганическая химия.- М.: Высшая школа, 1975 - С. 619.
  6. Харьков Е.И., Лысов В.И., Федоров В.Е. Физика жидких металлов. - Киев. Выща школа,1979. - 247с.



Отзывы (через Facebook):

Оставить отзыв с помощью аккаунта FaceBook:

КОМПЛЕМЕНТАРНАЯ ТЕРАПИЯ ХРОНИЧЕСКОГО ГЕПАТИТА

Статья в формате PDF 106 KB...

16 09 2019 1:31:31

ПРИНЦИПЫ МЕДИКАМЕНТОЗНОЙ КОРРЕКЦИИ МЕТАБОЛИЧЕСКИХ РАССТРОЙСТВ ПРИ ИШЕМИЧЕСКОМ ПОВРЕЖДЕНИИ МИОКАРДА

В опытах на беспородных белых крысах с экспериментальной ишемией миокарда в динамике наблюдений отмечено снижение уровня А Т Ф и креатинфосфата в гомогенатах миокарда на фоне подавления активности сукцинатдегидрогеназы, лактатдегидрогеназы, аспартатаминотрансферазы. Достигнуты положительные метаболические эффекты при введении ишемизированным животным неотона – донатора макроэргических связей и оказывающего активирующий эффект на ферменты гликолиза и цикла трикарбоновых кислот в динамике патологии. ...

15 09 2019 18:13:55

КРАСОТА КАК СОЦИАЛЬНЫЙ КОНСТРУКТ

Статья в формате PDF 339 KB...

10 09 2019 22:23:42

Развитие стекловидного тела глаза человека

Статья в формате PDF 111 KB...

03 09 2019 8:44:11

К ВОПРОСУ О ПСИХИЧЕСКОМ ЗДОРОВЬЕ

Статья в формате PDF 101 KB...

25 08 2019 15:24:21

ПОВЫШЕНИЕ ИНТЕРЕСА К МУСУЛЬМАНСКОЙ КУЛЬТУРЕ КАК РЕАКЦИЯ НА ГЛОБАЛИЗАЦИОННЫЕ ПРОЦЕССЫ

В статье показано увеличение интереса граждан России к истории и культуре стран ислама. Это связано с повышением политической активности этих стран и расширением их туристического сервиза. ...

23 08 2019 7:23:14

ПРЕПАРАТИВНЫЕ МЕТОДЫ СИНТЕЗА СУЛЬФИДОВ МЕТАЛЛОВ В СРЕДЕ Н-АЛКАНОВ

Разработаны препаративные методы синтеза сульфидов металлов в среде жидких н-алканов. Представлены результаты «дробного» и «свернутого» методов синтеза сульфидов металлов. Состав соединений установлен методами химического, рентгенофазового и рентгенофлуоресцентного анализов. ...

18 08 2019 13:33:37

ПРОБЛЕМА ПОЛУЧЕНИЯ ВЫСОКОКАЧЕСТВЕННОГО ФАРФОРА

Статья в формате PDF 113 KB...

16 08 2019 18:55:49

ЭКОНОМЕТРИЧЕСКОЕ МОДЕЛИРОВАНИЕ

Статья в формате PDF 345 KB...

14 08 2019 1:54:32

Статистические закономерности хронологии космонавтики

В статье описана и исследована методами математической статистики хронологическая аномалия космонавтики. Обоснован биномиальный закон распределения числа хронологических совпадений. Показано, что вероятность случайного появления рассматриваемых совпадений весьма мала. Метод исследования, применяемый в работе, преимущественно основан на статистическом анализе хронологии при помощи параметризации дат событий и проверки соответствующего критериального свойства. Используются параметры: условные номера дней с начала летоисчисления N, с начала года n и год Г. Основными информативными параметрами являются интервалы времени между событиями. Обоснован биномиальный закон распределения числа хронологических совпадений. Показано, что вероятность случайного появления рассматриваемых совпадений весьма мала. ...

11 08 2019 21:52:31

Анализ взаимодействия техносферы и окружающей среды

Статья в формате PDF 114 KB...

07 08 2019 22:44:42

СРАВНИТЕЛЬНЫЙ АНАЛИЗ ФИЗИЧЕСКОЙ НАГРУЗКИ РАЗЛИЧНОЙ НАПРАВЛЕННОСТИ НА АНТРОПОМЕТРИЧЕСКИЕ ПОКАЗАТЕЛИ У ЖЕНЩИН РАЗНЫХ ВОЗРАСТНЫХ ГРУПП С ИЗБЫТОЧНОЙ МАССОЙ ТЕЛА

Проведен анализ эффективности различных типов фитнес-программ в коррекции избыточной массы тела женщин юношеского и зрелого возраста. Применяемые физические нагрузки отличались характером нагрузки и наличию/отсутствию компонента коррекции питания. Исследовали антропометрические показатели, И М Т, определяли содержание жировой массы в организме методом калипометрии в динамике 6-месячного тренировочного цикла. Проводили промежуточные исследования: в середине, через 3 месяца от начала тренировочного цикла. В исследовании приняли участие 93 практически здоровые женщины с избыточной массой тела, не имеющие эндокринных заболеваний и противопоказаний к занятиям физической культурой. Выделены группы в зависимости от типа программы (I, II), а также подгруппы (Ia, IIa) в зависимости от возраста: 18–21 год (I и II, n = 17 и n = 17, соответственно) и 36–45 лет (Ia, IIa, n = 30 и n = 29, соответственно). Показана динамика и статистическая значимость различий в группах, проведен сравнительный анализ между группами. Выявлена более высокая физиологическая эффективность программы I, базирующейся на смешанном характере тренировки, многовариантной схеме упражнений с мониторированием и коррекцией характера питания. ...

28 07 2019 9:49:19

ПЛАТИНА И ПЛАТИОИДЫ В ОФИОЛИТАХ САЛАИРА, АЛТАЯ И ГОРНОЙ ШОРИИ

Приведены данные по распространению элементов платиновой группы ( Э П Г) в офиолитах Салаира, Алтая и Горной Шории. Э П Г в наибольших концентрациях отмечены в проявлениях хромитов, образующих подиформные залежи, а также в никелевых проявлениях с обильными сульфидами меди, никеля и кобальта. Минералы Э П Г представлены изоферроплатиной, иридосмином и рутениридосмином. Реже встречаются самородная платина, рутениевый невъянскит и рутениевый сысерскит. В рудных телах также присутствуют в повышенных концентрациях золото и серебро. Состав минеральных фаз платиноидов указывает на близость к восточно-уральскому геолого-промышленному типу, связанному с изверженными породами габбро-клинопироксенит-перидотитовой формации. ...

27 07 2019 10:18:23

ВТОРИЧНЫЕ ПЕЧЕНОЧНЫЕ ПОРФИРИИ У БОЛЬНЫХ С НАСЛЕДСТВЕННЫМ HLA-АССОЦИИРОВАННЫМ ГЕМОХРОМАТОЗОМ

Проведено исследование ведущих показателей метаболизма порфиринов и железа в сопоставлении с функциональным состоянием печени у 100 больных с гемохроматозом ( Г Х), в динамике. Дана объективная оценка их роли в своевременной и правильной постановке вторичной печеночной порфирии на ранних этапах развития патологического процесса. Порфириновый обмен при наследственном гемохроматозе ( Н Г Х) характеризуется глубоко нарушенными и нестабильными показателями, затрагивающими все этапы синтеза гема гемоглобина (Hb). У больных с Н Г Х и с сопутствующими поздней кожной порфирией ( П К П) и инфекционными вирусными гепатитами В и С, независимо от типа мутации гена HFE ( С289Y или H63D) изменения в обмене железа коррелируют с нарушенным синтезом аминолевулиновой кислоты ( А Л К) и порфобилиногена ( П Б Г). У больных диагностическую ценность в определении функционального состояния печени наряду с трансаминазами представляет исследование экскреции копропорфирина ( К П) с мочой. Выявленные изменения в порфириновом обмене при гомозиготной форме Н Г Х носят постоянный, часто необратимый характер, ухудшая прогноз заболевания. ...

25 07 2019 21:35:13

К ВОПРОСУ О МОДЕРНИЗАЦИИ РЕАЛЬНОГОСЕКТОРА ЭКОНОМИКИ РОССИИ

В статье рассматриваются теоретические и практические вопросы модернизации реального сектора экономики России. Исследуются факторы и условия, доказывающие необходимость коренных преобразований в базовых отраслях общественного производства. Раскрываются особенности функционирования реального сектора экономики в рыночных условиях современной социально-экономической системы России. Показывается роль научно-технического прогресса в формировании инновационной модели воспроизводства. Обоснована необходимость проведения действенной государственной промышленной и инновационной политики с целью создания целостной и эффективной национальной инновационной системы; создания системы экономических стимулов для производителей при вовлечении в гражданско-правовой оборот результатов интеллектуальной деятельности и обеспечения государственной поддержки дальнейшего развития национальной инновационной инфраструктуры. ...

24 07 2019 18:20:44

АНОРОГЕННЫЕ ГРАНИТОИДЫ АБАЙСКОГО МАССИВА ГОРНОГО АЛТАЯ: ПЕТРОЛОГИЯ И ГЕОХИМИЯ

В статье приведены спорные данные предшественников по составу и особенностям становления гранитоидов Абайского массива среднего девона. Новые данные, полученные авторами по петрологии и геохимии, позволяют отнести гранитоиды массива к анорогенному типу ( А-тип) с щелочными минералами (рибекитом, астрофиллитом). Формирование массива протекало в три фазы: 1 – гранодиориты; 2 – граниты, умеренно-щелочные рибекитовые граниты; 3 – лейкограниты и лейкогранит-порфиры. Генерация их происходила в постколлизионной обстановке, инициированной плюмтектоникой. В северо-западной части массива в районе пологого погружения кровли, осложнённой куполовидным поднятием, зафиксировано аномальное обогащение флюидной магматогенной фазы летучими компонентами, и особенно фтором, что указывает на возможность обнаружения здесь редкометалльно-редкоземельного оруденения. ...

22 07 2019 15:34:32

Качество жизни детей, больных вирусными гепатитами

Статья в формате PDF 136 KB...

19 07 2019 13:20:49

О СПОСОБАХ ОБОГАЩЕНИЯ ЗОЛОТОСОДЕРЖАЩЕГО МИНЕРАЛЬНОГО СЫРЬЯ В АППАРАТАХ ЛОТКОВОГО ТИПА

В статье описаны способы гравитационного извлечения мелкого золота из золотосодержащего минерального сырья в аппаратах лоткового типа, показан механизм движения и распределения частичек относительно их удельного веса в потоках перерабатываемой пульпы. Даны предпосылки для создания необходимых устройств с целью осуществления описанных способов. ...

17 07 2019 15:23:15

ТЕОРИЯ СТРУКТУРНЫХ ФАЗОВЫХ ПЕРЕХОДОВ LiCO2

Статья в формате PDF 97 KB...

11 07 2019 13:33:47

ЗДОРОВЬЕ ДЕТЕЙ ЛИЦ, ПЕРЕБОЛЕВШИХ ХЛОРАКНЕ

Статья в формате PDF 109 KB...

03 07 2019 11:22:34

СТАТИСТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ФУНКЦИОНАЛЬНОГО СОСТОЯНИЯ ПРИ ХРОНИЧЕСКОЙ СЕРДЕЧНОЙ НЕДОСТАТОЧНОСТИ У БОЛЬНЫХ ИШЕМИЧЕСКОЙ БОЛЕЗНЬЮ СЕРДЦА

В статье описываются математические модели в виде уравнения регрессии, которое позволяет по клиническим признакам хронической сердечной недостаточности со статистической достоверностью предсказать результаты 6-минутного теста. ...

30 06 2019 18:43:44

ВЫВОД УРАВНЕНИЙ МАКСВЕЛЛА ИЗ ФУНКЦИИ СОСТОЯНИЯ. ЗАРЯДОВАЯ ФУНКЦИЯ СОСТОЯНИЯ И ЕЁ СВЯЗЬ С ЗАКОНОМ СОХРАНЕНИЯ ЗАРЯДА

На основе введённых функций состояния для электромагнитного поля и зарядовой функции состояния для частиц выведена полная система уравнений Максвелла для электродинамики. Показано, что закон сохранения зарядов есть следствие существования этой функции. Показано также, что в вакууме электромагнитное поле отсутствует, что подтверждает справедливость теории дальнодействия. ...

26 06 2019 2:33:26

ВЫРАЩИВАНИЕ КРИСТАЛЛОВ В ДОМАШНИХ УСЛОВИЯХ

Статья в формате PDF 539 KB...

25 06 2019 13:50:15

ПОДВОДНЫЕ ГОРОДА

Статья в формате PDF 763 KB...

21 06 2019 3:55:32

MANAGEMENT OF KNOWLEDGE IN EDUCATIONAL PROCESS

Статья в формате PDF 133 KB...

20 06 2019 18:22:39

ОРГАНИЗАЦИЯ УПРАВЛЕНИЯ ПЕРСОНАЛОМ

Статья в формате PDF 103 KB...

11 06 2019 18:27:59

РЫНОК ТРУДА И ТРУДОУСТРОЙСТВО МОЛОДЫХ СПЕЦИАЛИСТОВ

Статья в формате PDF 145 KB...

10 06 2019 15:17:23

ПАНКРЕАТИТ КАК ОСЛОЖНЕНИЕ ПАПИЛЛОТОМИЙ – ПРИЧИНЫ ВОЗНИКНОВЕНИЯ, МЕРЫ ПРОФИЛАКТИКИ

На материале 769 клинических наблюдений проведен анализ причин возникновения острого панкреатита после эндоскопической папиллотомии. Установлено, что основой их развития является прямое повреждение главного протока поджелудочной железы. Разработаны способы профилактики постманипуляционных панкреатитов. ...

08 06 2019 18:52:59

Внутривидовое разнообразие Yersinia pestis

Статья в формате PDF 131 KB...

07 06 2019 4:34:48

CHYTRIDIOMYCOSIS У ЛИЧИНОК RANA ARVALIS NILSSON НА СРЕДНЕМ УРАЛЕ

На основании диагностических признаков приводятся доказательства, указывающие на то, что Chytridiomycosis существует в популяциях Rana arvalis на Среднем Урале. Показана методика обнаружения заболевания по аномалиям ротового аппарата личинок и отслеживания динамики частоты встречаемости его в популяции. В экстремальных условиях инфекция поражает ослабленных и ведет к их выбраковке, что приводит к ускорению адаптации популяции в целом в быстро изменяемой среде. ...

04 06 2019 14:52:11

ОСОБЕННОСТИ ВОССТАНОВЛЕНИЯ ПОРШНЕЙ ИЗ СПЛАВОВ АЛЮМИНИЯ АВТОТРАКТОРНОЙ ТЕХНИКИ

В статье рассмотрен прцесс химического никелирования деталей машин и оборудования как эффетивный и экономически выгодный способ получения стойких покрытий. Предлагается внедрить этот процесс в технологию восстановления деталей автотракторной техники из алюминиевых сплавов. ...

02 06 2019 2:53:49

ВОДА – НОСИТЕЛЬ ИНФОРМАЦИИ В ВОЛНОВОЙ ГЕНЕТИКЕ

Статья в формате PDF 101 KB...

29 05 2019 16:16:22

ИЗУЧЕНИЕ ХИМИЧЕСКОГО СОСТАВА И СПЕКТРОФОТОМЕТРИЧЕСКОЕ ОПРЕДЕЛЕНИЕ АМИНОКИСЛОТ В ТРАВЕ ОВСА ПОСЕВНОГО

Изучен химический состав травы овса посевного. Качественными реакциями обнаружены аминокислоты, крахмал и флавоноиды. Разработана методика спекторофотометрического определения суммы аминокислот по реакции с нингидрином. Установлено, что в траве овса содержится до 1% аминокислот в пересчете на кислоту глютаминовую. ...

27 05 2019 4:17:10

АНАЛЬГЕТИЧЕСКАЯ АКТИВНОСТЬ ОТВАРОВ КОРЫ И ОДНОЛЕТНИХ ПОБЕГОВ ИВЫ БЕЛОЙ

Объект исследования – ива белая, которая распространена практически по всей территории Европейской части России. За рубежом препараты и Б А Д из различных видов ивы активно применяются при заболеваниях суставов. В соответствии с Руководством по доклиническому изучению новых фармакологических веществ ( Р. У. Хабриев, 2005) оценивали эффективность анальгетического действия и токсичность отваров коры и однолетних побегов ивы белой на мышах. Отвары коры и побегов ивы относятся к классу малоопасные соединения и проявляют выраженную анальгетическую активность, сопоставимую с препаратом сравнения анальгином (метамизол). ...

26 05 2019 10:53:46

ОБРАЗЫ КУЛЬТУРНЫХ ЛАНДШАФТОВ В ТУРИЗМЕ

Статья в формате PDF 109 KB...

24 05 2019 10:37:10

НЕКОТОРЫЕ АСПЕКТЫ СОВЕРШЕНСТВОВАНИЯ ТЕХНОЛОГИИ ХЛЕБА ИЗ ЦЕЛОГО ЗЕРНА

Разработан способ производства хлеба из целого зерна. Снижение микробиологической обсеменненности зерна осуществляется с помощью природных консервантов, которые можно вносить на стадии замачивания зерна или приготовления теста. Для повышения качества хлеба, сокращения продолжительности замачивания зерна, повышения степени его дисперсности при получении теста целесообразно использовать цитолитические ферментные препараты. ...

21 05 2019 6:19:50

Методы лазеротерапии при астматическом бронхите

Статья в формате PDF 110 KB...

20 05 2019 8:10:22

ДИФФЕРЕНЦИРОВАННЫЙ ПОДХОД К ЛЕЧЕНИЮ УРАТНОГО НЕФРОЛИТИАЗА У БОЛЬНЫХ РАЗЛИЧНОГО ВОЗРАСТА

Географическое расположение и климатические условия Нижнего Поволжья, неудовлетворительная экологическая обстановка способствует росту заболеваемости мочеполовой системы у населения, проживающего в регионе. Увеличение частоты заболеваемости уратным нефролитиазом диктует необходимость поиска адекватного объема терапии по улучшению качества консервативного лечения этой патологии. Изучение особенностей симптомокомплекса уратного нефролитиаза в разных возрастных группах (25-30; 40-45; 60-70 лет) позволило научно обосновать и разработать практические рекомендации по рациональному и эффективному лечению данного вида мочекаменной болезни у пациентов с учетом их возраста. ...

17 05 2019 18:31:19

ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ ВЛИЯНИЯ ЭЛЕКТРОФИЗИЧЕСКИХ ФАКТОРОВ НА УРОЖАЙНОСТЬ ОВОЩНЫХ КУЛЬТУР

В работе представлены результаты исследования влияния высокоинтенсивных физических факторов электрического поля коронного разряда ( Э П К Р), создаваемого установкой « Экран», и некогерентных световых импульсов ( Н С И), создаваемых установкой « Стимул» [1, 2], на семена овощных культур, с целью повышения урожайности. По результатам исследования выявлено, что все использованные в эксперименте режимы высокоинтенсивного физического воздействия на семена овощных культур оказывают стимулирующий биологический эффект при оценке урожайности. Определено, что наиболее эффективными режимами Э П К Р для повышения урожайности овощных культур являются режимы с напряженностью электрического поля 3,5 к В/см и 5 к В/см. Выявлено, что наиболее эффективными режимами Н С И для повышения урожайности овощных культур является режим с запасенной суммарной электрической энергией импульсного источника энерго-питания 80 к Дж. Показано, что при воздействии на посадочный материал картофеля Н С И с запасенной суммарной электрической энергией 40 к Дж наблюдается стимулирование роста, развития, повышение всхожести и сокращение вегетационного периода картофеля. Кроме того, данное физическое воздействие вызывает повышение качества урожая картофеля, т.к. вес и количество крупных и средних клубней в опытной группе значительно больше, чем в контрольной. ...

16 05 2019 14:38:24

ПРОБЛЕМА МОТИВАЦИИ И ПРОФЕССИОНАЛЬНОЙ ОРИЕНТАЦИИ В ПОДГОТОВКЕ ШКОЛЬНЫХ УЧИТЕЛЕЙ

В работе приводится анализ мотивации выбора профессии педагога на основе изучения профессиональной ориентации в группе студентов факультета дополнительных профессий С Г П И. ...

12 05 2019 16:19:22

О ЗАКОНЕ АРХИМЕДА

Статья в формате PDF 161 KB...

11 05 2019 6:21:28

ИЗМЕНЕНИЯ МИКРОФЛОРЫ У БОЛЬНЫХ, ОПЕРИРОВАННЫХ НА ПОВРЕЖДЕННОЙ СЕЛЕЗЕНКЕ

Проведено изучение состояние микрофлоры у пациентов после различных операций, выполненных по поводу повреждений селезенки в отдаленном послеоперационном периоде. В результате проведенного исследования установлено, что сохранение селезенки предотвращает изменения микрофлоры, так как полученные результаты соответствовали данным группы сравнения. В тоже время, удаление селезенки приводит к нарушению микрофлоры. ...

10 05 2019 3:28:41

Медико-экологическая оценка состояния здоровья населения г. Сатпаев по данным обращаемости

Проведен анализ динамики заболеваемости по отдельным возрастным группам населения г. Сатпаев. Результаты показали, что общим явлением для всех возрастных групп было значительное учащение после аварии болезней органов дыхания, а у взрослых и подростков – болезней мочеполовой системы. Заболеваемость детского населения в 2007 г. возросла по сравнению с 2006 г. в 1,3 раза, различия достоверны с высоким уровнем вероятности такого утверждения (26782,3 ± 333,4‰ против 34393,1 ± 359,8‰, t = 15,3, p < 0,001). Анализ ситуаций, показал, что психо-эмоциональный стресс, вызывающий обострение многих хронических и появление новых нозологических форм заболеваний, тесно связан с психо-эмоциональным состоянием типа высшей нервной деятельности человека. ...

08 05 2019 21:26:40

ГИСТОТОПОГРАФИЧЕСКОЕ ИЗУЧЕНИЕ СОДЕРЖАНИЯ ПОЛИСАХАРИДОВ И ЛИПИДОВ В ТКАНЯХ TRICHОCEPHALUS TRICHIURUS И TR.MURIS ПРИ ЛЕЧЕНИИ ТРИХОЦЕФАЛЕЗА НЕКОТОРЫМИ АНТИГЕЛЬМИНТИКАМИ

В статье изложены результаты исследования содержания таких биоэнергетически активных компонентов-углеводов и липидов в организме Trichocephalus trichiurus,Tr.muris в норме и после применения принятых терапевтических дозах Вермокса, Медамина и Дифезила. ...

04 05 2019 2:31:50

ПЕТРОЛОГИЯ, ГЕОХИМИЯ И ФЛЮИДНЫЙ РЕЖИМ АНОРОГЕННЫХ ГРАНИТОИДОВ САНГИЛЕНА

Приведены данные по петрологии и потенциальной рудоносности умеренно-щелочных гранитоидов Нагорного Сангилена, которые по сумме признаков отнесены к анорогенному типу. Показано ведущее значение в генерации этих фельзических интрузивных образований флюидного режима, в котором доминирующую роль играли концентрации плавиковой кислоты. ...

03 05 2019 23:38:48

ОСОБЕННОСТИ НЕПРЕРЫВНОЙ МНОГОУРОВНЕВОЙ ПОДГОТОВКИ СПЕЦИАЛИСТОВ В ЕДИНОМ ПЕДАГОГИЧЕСКОМ ПРОСТРАНСТВЕ "ШКОЛА-КОЛЛЕДЖ-ВУЗ"

В работе выявлены специфические особенности непрерывной многоуровневой подготовки специалистов в едином педагогическом пространстве « Школа – Колледж – В У З », позволяющие с иной точки зрения подходить к отдельным аспектам модернизации непрерывного образования. ...

25 04 2019 21:24:44

КОНКУРЕНТОСПОСОБНОСТЬ ЭКОНОМИКИ ТОМСКОЙ ОБЛАСТИ

Статья в формате PDF 101 KB...

23 04 2019 14:25:57

Еще:
Обзоры -1 :: Обзоры -2 :: Обзоры -3 :: Обзоры -4 :: Обзоры -5 :: Обзоры -6 :: Обзоры -7 :: Обзоры -8 :: Обзоры -9 :: Обзоры -10 :: Обзоры -11 ::

Последовательность подготовки научной работы может быть такой:

Выбор темы. Это важный этап. Во-первых, тема должна быть интересна не только вам, но и большинству слушателей, которым вы будете её докладывать, чтобы вы видели заинтересованность в их глазах, а не откровенную скуку.

Выбор целей и задач своей научной работы. То есть, нужно сузить тему. Например, тема: «Грудное вскармливание», сужение темы: «Грудное вскармливание среди студенток нашего ВУЗа». И если общая тема мало кому интересна, то суженная до рамок собственного института или университета, она становится интересной практически для всех слушателей. Целью может стать: «Содействие оптимальным условиям вскармливания грудью детей студентов нашего ВУЗа», а задачей — доказать, что специальные условия, созданные для кормящих студенток, не помешают их успеваемости, но уменьшат количество пропусков, академических отпусков и способствуют выращиванию здоровых детей — нашего будущего. Понятно, что эта тема подходит для студентов медицинских и педагогических ВУЗов, но и в других учебных учреждениях можно найти темы, интересные всем.

Разработать методы исследования и сбора информации. В случае с естественным вскармливанием, скорее всего, это будет анкетирование студенток, имеющих детей.

Систематизировать материал и подготовить презентацию.

Подготовиться к выступлению.

Выступить и получить: награду, удовольствие и опыт, чтобы в следующем году выступить ещё лучше и сорвать шквал аплодисментов, стать узнаваемым, а значит — более конкурентоспособным!