IT-Reviews    

РАЗРАБОТКА МАТЕМАТИЧЕСКОЙ МОДЕЛИ ПРОГНОЗИРОВАНИЯ ЗАБОЛЕВАЕМОСТИ КЛЕЩЕВЫМ ЭНЦЕФАЛИТОМ

Цокова Т.Н. Козлов Л.Б. Разработана математическая модель прогнозирования инфекционной заболеваемости на модели природно-очаговой инфекции, возбудителем которой является вирус клещевого энцефалита. Математическая модель представлена в виде аддитивного временного ряда, включающая тренд, случайные компоненты и сезонные составляющие, имеющие разную периодичность: менее года, 3 года и многолетнюю. Статья в формате PDF 130 KB

Математическое моделирование эпидемических процессов (ЭП) позволяет осуществлять качественный долгосрочный прогноз инфекционной заболеваемости, выявлять факторы, влияющие на динамику ЭП. В 70-х годах ХХ столетия Л.Н. Большев с соавторами [2, 3] разработали математическую модель прогноза заболеваемости клещевым энцефалитом (КЭ). Для построения модели авторы провели предварительный анализ влияния частоты присасывания клещей и иммунной прослойки населения всех возрастов на частоту заболеваний КЭ. Е.И.Болотин с соавторами [1] разработали методику факторного временного прогнозирования эпидемических проявлений очагов КЭ с использованием выявленных критических уровней заболеваемости.

Нами для разработки математического моделирования ЭП использована многолетняя динамика заболеваемости КЭ на юге Тюменской области и составлены временные ряды в климатических подзонах. Математическая модель позволила без предварительного анализа факторов, влияющих на ЭП, осуществлять прогноз заболеваемости КЭ.

По анализу временных рядов можно предсказать будущие значения временного ряда на основании предыдущих фактических данных [5]. В процессе составления временного ряда необходимо идентифицировать и формально описать его. Как только математическая модель будет определена, ее можно экстраполировать, не обращая внимания на процессы, влияющие на изменение показателей временного ряда.

Данный метод использован нами для изучения динамики ЭП, вызванного вирусом КЭ. Сложность возникла при идентификации временного ряда. При монотонном тренде происходит устойчивое нарастание или убывание значений временного ряда. Анализировать такой ряд обычно нетрудно. В качестве экстраполирующей функции ряда чаще всего выбирают известные математические зависимости - линейные, параболические, экспоненциальные и др., которые часто не отражают динамику ЭП. Прогнозируемые значения такого ряда будут являться оценочными и не обеспечивают точности расчётов.

Реже используют полиномиальное преобразование временного ряда. Сглаживание ряда с помощью полиномов связано с проведением трудоёмких вычислений, что не позволяет широко использовать данный метод для прогноза инфекционной заболеваемости, и в научной литературе сведения о применении полиномиального метода для этих целей отсутствуют.

Для прогнозирования заболеваемости КЭ нами использована аддитивная модель и временной ряд был представлен функциональной зависимостью:

y(t) = f(t) + s(t) + ε(t),                       (1)

где y(t) - значение временного ряда в момент времени t; f(t) - основная составляющая ряда (тренд); s(t) - сезонная составляющая (отражает повторяемость показателей заболеваемости в течение сезона года); ε(t) - случайная компонента (отражает неучтённые и случайные факторы, влияющие на ЭП). Временные ряды могут содержать одновременно все перечисленные компоненты или их различные комбинации. Такой ряд называют временным с сезонной составляющей.

Для получения тренда использовано уравнение полинома Чебышева высокого порядка, что позволило снизить погрешности в прогнозе заболевания. Аппроксимирующая функция f(t) теоретически может быть выражена многочленом любой степени m, например:

                     (2)

При каждом повышении порядка полинома требуется определение не только нового параметра, αm+1, но ввиду изменения системы "нормальных уравнений", проводят пересчет всех остальных параметров: от αo до αm.

Рассмотрев общий случай использования метода наименьших квадратов, П. Л. Чебышев разработал метод вычисления уравнения регрессии, позволяющий определять добавляемый параметр без пересчета найденных ранее параметров, ограничиваясь лишь вычислением нового параметра. Добавляемый член имеет вид: , где  определяется по общей формуле:

                          (3)

 В этом случае уравнение регрессии принимает вид [4]:   

                     (4)

После нахождения уравнения тренда вычисляют остаточную дисперсию по формуле:

,                   (5)

где n-m-1 - степень свободы, m - степень полинома, n - объём выборки.

Для получения Sm применяют формулу:

,                     (6)

где - значение ординаты, рассчитанное по уравнению полинома m - степени. Переход к многочленам более высокого порядка производят до тех пор, пока остаточная дисперсия продолжает уменьшаться. Если остаточная дисперсия при выравнивании по многочлену m+1 порядка по сравнению с остаточной дисперсией, полученной для уравнения порядка m, уменьшается незначительно, переход к уравнениям более высокого порядка следует прекратить и аппроксимацию считать достаточной.

Ошибка расчёта (среднеквадратическое отклонение полученной функции от экспериментальных точек) должно быть одного порядка с погрешностью введённых табличных данных, так как среднеквадратическое отклонение зависит от у, n и вида выбранной функции y*. Вычисляют среднеквадратическое отклонение  полученной теоретической кривой y* от экспериментальной у:

                        (7)

и сравнивают с погрешностью эксперимента ε. При этом возможно:

1) δn> ε- аппроксимация слишком грубая, степень полинома необходимо увеличить;

2) δn < ε - аппроксимация физически недостоверна, истинная функция "сплющена", старшие степени полинома лишние и, следовательно, надо уменьшить степень полинома;

3)  δn ≈ ε- степень полинома оптимальна.

Погрешность эксперимента рассчитывали по формуле:

,                 (8)

где yi - наблюдаемые значения,  - среднее значение введённых параметров, n - объём выборки.

Аппроксимирующая функция для строго периодической сезонной составляющей s(t) в уравнении (1) находили, используя тригонометрическую функцию, приподнятую над осью t и сдвинутую вдоль неё, в виде:

s(t) = ao + a1  + b1                (9)

В нашем случае, будучи периодической и заданной в виде таблицы, сезонная составляющая не являлась синусоидой, но была близка к ней. Изменив масштаб по оси t в  раз ( - число полупериодов сезонной составляющей) получили:

s(t) = ao + a1 cos(z) + b1sin(z)                                     (10)

Сжатие графика по оси t не изменит табличные значения s(t) и коэффициентов ao, a1, b1. Коэффициенты ao, a1, b1 определялись из уравнения (10) методом наименьших квадратов. Была получена система из трёх уравнений, после решения которой, получены формулы для расчёта коэффициентов:


b1=

a1=

ao=

zi=                     (11)

Функция s(t) определена на отрезке [1, N] не симметрично точке t=0. Поэтому, после вычисления коэффициентов по уравнениям (11), следует сдвинуть функцию s(t), заменив аргумент  в формуле (9) на выражение:

                                                (12)

Аппроксимация тригонометрическим многочленом менее точная, чем например степенная иди другая, но к ней прибегают если функция строго периодическая. Для более точного расчёта ao, a1, b1 необходимо точно определить период сезонной составляющей вводимого временного ряда.

Условие δn ≈ ε - степень полинома оптимальна, выполнялось для уравнения тренда с учётом сезонной составляющей.

Весь алгоритм расчётов по формулам 2 - 12 можно автоматизировать. Нами была составлена компьютерная программа, которая позволяет провести полиномиальную аппроксимацию высокого порядка (8 порядка и выше) значений функций заданных таблично. Используя полученное уравнение тренда, проводили прогнозирование заболеваемости. Программы составлены для ПК, работающие в среде Microsoft Windows на программном языке Visual Basik.

Для составления данной программы использована база данных «Tumklech» [8]. Фактическая заболеваемость КЭ была переведена в показатели заболеваемости на 100 тыс. населения. Анализ тренда проводили в два этапа: определяли наличие тренда и выделяли тренд. Для определения наличия тренда использован критерий Стьюдента, позволяющий выявить различие выборочных средних двух половинок временного ряда. Если различие значимо, то гипотеза о наличии тренда не отвергалась. Для выделения тренда использовали модель простого статистического ряда и аддитивную модель временного ряда (временной ряд с сезонной составляющей).

В динамике заболеваемости КЭ характерна трехлетняя цикличность и в течение сезона года (с 1.04 по 30.09) также наблюдались колебания в показателях заболеваемости. Усреднив значения ряда в соответствии с трёхлетней цикличностью, получим сезонные колебания заболеваемости для каждого года трехлетнего цикла [7]. Однако для долгосрочного прогноза, предложенный способ прогноза будет недостаточно точным.

Известно, что в природе существуют циклические колебания погоды, связанные с цикличностью излучения Солнца. Большой цикл Солнца длится 11 лет. Он связан с цикличностью образования солнечных пятен. 1979-1982 годы максимальной активности; 1986-1987 годы минимальной активности. В настоящее время Солнечная активность минимальная [6].

Методом дисперсионного анализа нами также установлено наличие многолетнего цикла в динамике заболеваемости КЭ. В 1999г. наблюдалась максимальная заболеваемость КЭ во всех климатических подзонах юга Тюменской области.

Применение многолетней цикличности к нашим расчётам, означает усложнение модели временного ряда ещё одной составляющей, зависящей от многолетней цикличности. В этом случае прогноз модели будет точнее. Условно назовём эту модель - аддитивная модель с двумя составляющими. Уравнение этой модели:

y(t) =f(t) + e1(t) + e2(t),                                                 (13)

где ε1(t) - сезонная составляющая с трёхлетним периодом, ε2(t) -сезонная составляющая с многолетним периодом. Данная модель может быть использована для долгосрочного прогнозирования заболеваемости КЭ.

СПИСОК ЛИТЕРАТУРЫ:

  1. Болотин Е.И., Цициашвили Г.Ш., Голычева И.В. // Паразитология. - 2002. - Т.36.- Вып. 2. - С.89.
  2. Большев Л.Н., Гольдфарб Л.Г. // Вопросы эпидемиологии и профилактики клещевого энцефалита. - М., 1970. - С. 154.
  3. Большев Л.Н., Гольдфарб Л.Г., Круопис Ю.И. // Вопросы эпидемиологии и профилактики клещевого энцефалита. - М., 1970. - С. 171.
  4. Венецкий И.Г., Кильдишев Г.С. Теория вероятности и математическая статистика. - М., «Статистика». - 1975. - 264 с.
  5. Ивашев-Мусатов О.С. Теория вероятности и математическая статистика. - М., «Наука». - 1979. - 254 с.
  6. Ишков В.Н. «Вселенная и мы» http://www.астронет.ru/ / Солнце в текущем 23 цикле солнечной активности.
  7. Козлов Л.Б., Кашуба Э.А., Цокова Т.Н. и др. Способ прогноза заболеваемости клещевыми инфекциями // Патент RU 2294697 С2. - Бюл. № 7 от 10.03.2007г.
  8. Козлов Л.Б., Цокова Т.Н., Огурцов А.А. и др. / Заболеваемость клещевым энцефалитом в Тюменской области «Tumklech» // База данных. - Свидетельство №2007620363 от 18.10.2007. - Правообладатель: ФГУЗ «Центр гигиены и эпидемиологии в Тюменской области».



c78089d0

Отзывы (через Facebook):

Оставить отзыв с помощью аккаунта FaceBook:

ПОДТВЕРЖДЕНИЕ ЭФФЕКТИВНОСТИ ПРИМЕНЕНИЯ ПРЕПАРАТА «КОРТЕКСИН» У&#8239;ПОДРОСТКОВ МЕТОДОМ ИК-СПЕКТРОМЕТРИИ

Малоизученным направлением в диагностике психосоматических заболеваний является исследование физико-химических характеристик крови. Методы, применяемые в диагностике и контроле лечения психосоматических заболеваний в целом, и задержке психического развития в частности ( З П Р), являются достаточно субъективными. Во многом это обусловлено отсутствием однозначных лабораторно-диагностических методов, позволяющих осуществлять диагностику на ранних этапах заболевания. Целью нашего исследования явилось изучение особенностей И К – спектра сыворотки крови детей подросткового возраста. В качестве субстрата для исследования использовали сыворотку крови больных детей, которую затем подвергали И К-спектроскопии с регистрацией спектров поглощения в области 3500-963 см-1. Исследована сыворотка крови 30 детей с диагнозом З П Р и 30 здоровых, сопоставимых по возрасту и полу. Было проведено сравнение И К-спектра сыворотки крови больных с  З П Р и здоровых доноров. Достоверно выявлена разница показателей инфракрасной спектрометрии в норме и патологии, а так же проверена эффективность применяемой терапии. Таким образом, с помощью И К-спектрометрии установлены особенности спектров сыворотки крови детей подросткового возраста и выявлены отличия в спектре у детей с  З П Р и динамические изменения в процессе лечения, что может использоваться для диагностики данной патологии, а так же для контроля за эффективностью проводимого лечения. ...

30 05 2020 3:53:55

МОДЕЛИ ЭВОЛЮЦИОННОЙ ЭКОЛОГИИ ДЛЯ ЦЕЛЕЙ КАРТОГРАФИИ

Статья в формате PDF 103 KB...

25 05 2020 14:28:28

ИЗМЕНЕНИЕ СОКРАТИТЕЛЬНОЙ АКТИВНОСТИ И &#946;-АДРЕНОРЕАКТИВНОСТИ ИЗОЛИРОВАННОГО МИОМЕТРИЯ БЕРЕМЕННЫХ ЖЕНЩИН ПОД ВЛИЯНИЕМ ОЗОНИРОВАННОГО РАСТВОРА КРЕБСА

В опытах с 19 полосками миометрия, полученных от 5 женщин в конце доношенной беременности при плановом кесаревом сечении, установлено, что озонированный ( ≈0,50 мкг/мл) раствор Кребса ингибирует спонтанную сократительную активность миометрия и существенно уменьшает стимулирующий эффект адреналина, т.е. снижает его α-адренореактивность. Это объясняет эффективность озонотерапии при угрозе прерывания беременности и дискоординированной родовой деятельности. ...

21 05 2020 17:10:28

Фенологическая характеристика Ивановской области

Статья в формате PDF 267 KB...

17 05 2020 3:39:51

ИНЖЕНЕРНАЯ ГРАФИКА (электронное учебное пособие)

Статья в формате PDF 103 KB...

15 05 2020 20:23:45

ДИАЛОГ КУЛЬТУР В XXI ВЕКЕ

Статья в формате PDF 281 KB...

08 05 2020 21:11:15

ДИСКОЛЕТ И ЕГО АВТОМОДЕЛЬНОСТЬ

Измерена подъемная сила, создаваемая скошенным экранированным кольцевым крылом. Показано, что экспериментальные результаты удовлетворяют свойству автомодельности. ...

06 05 2020 11:38:47

Статистические закономерности хронологии космонавтики

В статье описана и исследована методами математической статистики хронологическая аномалия космонавтики. Обоснован биномиальный закон распределения числа хронологических совпадений. Показано, что вероятность случайного появления рассматриваемых совпадений весьма мала. Метод исследования, применяемый в работе, преимущественно основан на статистическом анализе хронологии при помощи параметризации дат событий и проверки соответствующего критериального свойства. Используются параметры: условные номера дней с начала летоисчисления N, с начала года n и год Г. Основными информативными параметрами являются интервалы времени между событиями. Обоснован биномиальный закон распределения числа хронологических совпадений. Показано, что вероятность случайного появления рассматриваемых совпадений весьма мала. ...

04 05 2020 15:13:15

СТОЛЯРОВ СТАНИСЛАВ ПЕТРОВИЧ

Статья в формате PDF 225 KB...

28 04 2020 17:33:10

ИНТЕРНЕТ КАК СРЕДСТВО ОБУЧЕНИЯ

Статья в формате PDF 315 KB...

27 04 2020 9:47:29

УЧЕНИЕ В.И. ВЕРНАДСКОГО И ЗДОРОВЬЕ НАСЕЛЕНИЯ

Статья в формате PDF 89 KB...

24 04 2020 21:54:42

УНИВЕРСАЛЬНОЕ ИСКУССТВОЗНАНИЕ КАК НАУЧНОЕ НАПРАВЛЕНИЕ

В статье доктора искусствоведения профессора Саратовской консерватории, члена-корреспондента Российской академии естествознания даётся обоснование нового научного направления – универсального искусствознания, целью которого является комплексное исследование художественного процесса с вовлечением всех видов искусства в их глобальном охвате, а также построение художественной картины мира как особого рода исторической памяти. ...

15 04 2020 9:36:33

СИСТЕМНЫЙ КРИЗИС В СТРОИТЕЛЬСТВЕ

Статья в формате PDF 343 KB...

14 04 2020 23:30:54

Особенности гаметогенеза рыб на примере карповых

Статья в формате PDF 124 KB...

13 04 2020 17:42:18

НАРУШЕНИЯ ЦЕНТРАЛЬНОЙ НЕРВНОЙ СИСТЕМЫ И ОРГАНОВ ЧУВСТВ СРЕДИ ПОПУЛЯЦИИ ШИРВАНСКОЙ ЗОНЫ АЗЕРБАЙДЖАНА

Среди населения Ширванской зоны Азербайджана проведены медико-генетические исследования по выявлению нарушений Ц Н С и органов чувств, установлены типы наследования патологий. Среди 119 больных с 14 наследственными и врожденными заболеваниями 71,43 % приходится на моногенные патологии с аутосомно-рецессивным типом наследования, что объясняется кровнородственными браками среди родителей пробандов. ...

11 04 2020 0:17:58

ИСПОЛЬЗОВАНИЕ ЛЕСНЫХ РЕСУРСОВ

Статья в формате PDF 269 KB...

01 04 2020 10:19:54

ОРГАНИЗАЦИОННЫЕ АСПЕКТЫ ПРОФИЛАКТИЧЕСКИХ ОСМОТРОВ И ПСИХОСОМАТИЧЕСКИХ ИССЛЕДОВАНИЙ У ЖЕНЩИН РЕПРОДУКТИВНОГО ВОЗРАСТА

Проведено комплексное психо-соматическое обследование 3280 женщин репродуктивного возраста с мастопатией. Сделан вывод о необходимости организации специализированных маммологических кабинетов для квалифицированной диагностики, лечения и психологической коррекции пациенток с заболеваниями молочных желез. ...

28 03 2020 11:23:51

ВСЕРОССИЙСКАЯ КОНФЕРЕНЦИЯ «ПРОБЛЕМЫ МОРФОРОЛИИ»

Статья в формате PDF 86 KB...

25 03 2020 6:17:12

СУЩНОСТЬ КРИЗИСНЫХ ОТНОШЕНИЙ (ОТДЕЛЬНЫЕ АСПЕКТЫ)

Статья в формате PDF 295 KB...

20 03 2020 12:33:36

МИРОВАЯ КУЛЬТУРА В СИСТЕМЕ РАЗВИТИЯ ЕСТЕСТВЕННОНАУЧНОГО ИНТЕЛЛЕКТА УЧАЩИХСЯ

Умелое использование сокровищницы мировой культуры, достойное место в которой занимают поэтические и художественные произведения М. В. Ломоносова, М. И. Алигер, И. В. Гёте, И. А. Ефремова, К. Г. Паустовского, в педагогической практике обеспечивает эффективное развитие естественнонаучного интеллекта и формирование мировоззрения школьников. ...

19 03 2020 21:59:31

Туманова Анна Леоновна

Статья в формате PDF 78 KB...

15 03 2020 19:57:55

Развитие стекловидного тела глаза человека

Статья в формате PDF 111 KB...

08 03 2020 17:28:27

ИКСОДОВЫЕ КЛЕЩИ И ЖИВОТНОВОДСТВО КУЗБАССА

Статья в формате PDF 117 KB...

04 03 2020 15:48:40

ВИНДЖАММЕРЫ – «ВЫЖИМАТЕЛИ ВЕТРА»

Статья в формате PDF 412 KB...

03 03 2020 4:39:38

НОВОЕ ОБОРУДОВАНИЕ ДЛЯ СУШКИ ЗЕРНА

Статья в формате PDF 120 KB...

01 03 2020 18:41:57

АЛГОРИТМ РАСЧЕТА МОДИФИЦИРОВАННОЙ ГЕРТ-СЕТИ

Статья в формате PDF 130 KB...

15 02 2020 4:55:13

ЭКОНОМИЧЕСКИЕ ВОПРОСЫ РЕМОНТА БЫТОВОЙ ТЕХНИКИ

В статье показано, что ремонт бытовой техники в зависимости от сложности и условий эксплуатации подразделяется на ремонт непосредственно на дому у заказчика, ремонт в мастерской. Ремонт на дому у заказчика связан с выполнением мелкого и среднего ремонта, т.е. когда ремонт технически возможен и экономически целесообразен. Ремонт в мастерской выполняется тогда, когда невозможно его выполнить в домашних условиях. Кроме того , ремонт бывает в гарантийный период и в послегарантийный периоды эксплуатации. Во всех случаях оплата за ремонт осуществляется по своим правилам, ...

03 02 2020 23:12:42

Приметы как формы национальной культуры

Статья в формате PDF 249 KB...

25 01 2020 4:14:24

ЦИФРОВОЙ МОДЕМ ДЛЯ СЕТИ ISDN

Статья в формате PDF 297 KB...

23 01 2020 13:23:13

МОДЕЛЬ ПРОЦЕССА ПЕРЕНОСА КОЛИЧЕСТВА ЗАРЯДА – ЭЛЕКТРИЧЕСКАЯ ПРОВОДИМОСТЬ РАСТВОРОВ ХЛОРОВОДОРОДА В Н-СПИРТАХ

Ранее авторами была показана применимость плазмоподобной теории растворов для расчетов эквивалентной электропроводности растворов различных электролитов в воде и этаноле. В данной статье были экспериментально измерены значения электропроводности хлороводорода в четырех н-спиртах (этаноле, пропаноле, бутаноле и пентаноле) при различных температурах (278-328 К), а также получены расчетные значения электропроводности. Сделан вывод о хорошем соответствии расчетных данных экспериментальным. ...

19 01 2020 4:27:42

Право и долг в самосознании русского народа

Статья в формате PDF 113 KB...

18 01 2020 16:22:14

Изучение эффективности галавтилина у больных рожей

Статья в формате PDF 115 KB...

16 01 2020 8:39:39

ДЕМОНСТРАТИВНОСТЬ В ПОВЕДЕНИИ ПОДРОСТКА И ШКОЛА

Статья в формате PDF 307 KB...

11 01 2020 21:45:38

ФОРМИРОВАНИЕ ПРОСТРАНСТВА ПОЗНАВАТЕЛЬНЫХ КОММУНИКАЦИЙ. КВАЗИРЕЧЕВОЙ ДИАЛОГ В УЧЕБНОМ ПОСОБИИ

Выделены навыки социальной коммуникации, необходимые для успешного освоения химических дисциплин. Предложен один из путей снятия напряженности в процессе общения преподавателя и студента - виртуальный письменный диалог, реализованный в виде учебного пособия. Используемые в пособии методические приемы позволяют наиболее полно сформировать необходимый инструментарий познания: (логические операции + социальная коммуникация) → понимание → знание. ...

10 01 2020 2:28:20

Еще:
Обзоры -1 :: Обзоры -2 :: Обзоры -3 :: Обзоры -4 :: Обзоры -5 :: Обзоры -6 :: Обзоры -7 :: Обзоры -8 :: Обзоры -9 :: Обзоры -10 :: Обзоры -11 ::

Последовательность подготовки научной работы может быть такой:

Выбор темы. Это важный этап. Во-первых, тема должна быть интересна не только вам, но и большинству слушателей, которым вы будете её докладывать, чтобы вы видели заинтересованность в их глазах, а не откровенную скуку.

Выбор целей и задач своей научной работы. То есть, нужно сузить тему. Например, тема: «Грудное вскармливание», сужение темы: «Грудное вскармливание среди студенток нашего ВУЗа». И если общая тема мало кому интересна, то суженная до рамок собственного института или университета, она становится интересной практически для всех слушателей. Целью может стать: «Содействие оптимальным условиям вскармливания грудью детей студентов нашего ВУЗа», а задачей — доказать, что специальные условия, созданные для кормящих студенток, не помешают их успеваемости, но уменьшат количество пропусков, академических отпусков и способствуют выращиванию здоровых детей — нашего будущего. Понятно, что эта тема подходит для студентов медицинских и педагогических ВУЗов, но и в других учебных учреждениях можно найти темы, интересные всем.

Разработать методы исследования и сбора информации. В случае с естественным вскармливанием, скорее всего, это будет анкетирование студенток, имеющих детей.

Систематизировать материал и подготовить презентацию.

Подготовиться к выступлению.

Выступить и получить: награду, удовольствие и опыт, чтобы в следующем году выступить ещё лучше и сорвать шквал аплодисментов, стать узнаваемым, а значит — более конкурентоспособным!