IT-Reviews    

РАЗРАБОТКА МАТЕМАТИЧЕСКОЙ МОДЕЛИ ПРОГНОЗИРОВАНИЯ ЗАБОЛЕВАЕМОСТИ КЛЕЩЕВЫМ ЭНЦЕФАЛИТОМ

Цокова Т.Н. Козлов Л.Б. Разработана математическая модель прогнозирования инфекционной заболеваемости на модели природно-очаговой инфекции, возбудителем которой является вирус клещевого энцефалита. Математическая модель представлена в виде аддитивного временного ряда, включающая тренд, случайные компоненты и сезонные составляющие, имеющие разную периодичность: менее года, 3 года и многолетнюю. Статья в формате PDF 130 KB

Математическое моделирование эпидемических процессов (ЭП) позволяет осуществлять качественный долгосрочный прогноз инфекционной заболеваемости, выявлять факторы, влияющие на динамику ЭП. В 70-х годах ХХ столетия Л.Н. Большев с соавторами [2, 3] разработали математическую модель прогноза заболеваемости клещевым энцефалитом (КЭ). Для построения модели авторы провели предварительный анализ влияния частоты присасывания клещей и иммунной прослойки населения всех возрастов на частоту заболеваний КЭ. Е.И.Болотин с соавторами [1] разработали методику факторного временного прогнозирования эпидемических проявлений очагов КЭ с использованием выявленных критических уровней заболеваемости.

Нами для разработки математического моделирования ЭП использована многолетняя динамика заболеваемости КЭ на юге Тюменской области и составлены временные ряды в климатических подзонах. Математическая модель позволила без предварительного анализа факторов, влияющих на ЭП, осуществлять прогноз заболеваемости КЭ.

По анализу временных рядов можно предсказать будущие значения временного ряда на основании предыдущих фактических данных [5]. В процессе составления временного ряда необходимо идентифицировать и формально описать его. Как только математическая модель будет определена, ее можно экстраполировать, не обращая внимания на процессы, влияющие на изменение показателей временного ряда.

Данный метод использован нами для изучения динамики ЭП, вызванного вирусом КЭ. Сложность возникла при идентификации временного ряда. При монотонном тренде происходит устойчивое нарастание или убывание значений временного ряда. Анализировать такой ряд обычно нетрудно. В качестве экстраполирующей функции ряда чаще всего выбирают известные математические зависимости - линейные, параболические, экспоненциальные и др., которые часто не отражают динамику ЭП. Прогнозируемые значения такого ряда будут являться оценочными и не обеспечивают точности расчётов.

Реже используют полиномиальное преобразование временного ряда. Сглаживание ряда с помощью полиномов связано с проведением трудоёмких вычислений, что не позволяет широко использовать данный метод для прогноза инфекционной заболеваемости, и в научной литературе сведения о применении полиномиального метода для этих целей отсутствуют.

Для прогнозирования заболеваемости КЭ нами использована аддитивная модель и временной ряд был представлен функциональной зависимостью:

y(t) = f(t) + s(t) + ε(t),                       (1)

где y(t) - значение временного ряда в момент времени t; f(t) - основная составляющая ряда (тренд); s(t) - сезонная составляющая (отражает повторяемость показателей заболеваемости в течение сезона года); ε(t) - случайная компонента (отражает неучтённые и случайные факторы, влияющие на ЭП). Временные ряды могут содержать одновременно все перечисленные компоненты или их различные комбинации. Такой ряд называют временным с сезонной составляющей.

Для получения тренда использовано уравнение полинома Чебышева высокого порядка, что позволило снизить погрешности в прогнозе заболевания. Аппроксимирующая функция f(t) теоретически может быть выражена многочленом любой степени m, например:

                     (2)

При каждом повышении порядка полинома требуется определение не только нового параметра, αm+1, но ввиду изменения системы "нормальных уравнений", проводят пересчет всех остальных параметров: от αo до αm.

Рассмотрев общий случай использования метода наименьших квадратов, П. Л. Чебышев разработал метод вычисления уравнения регрессии, позволяющий определять добавляемый параметр без пересчета найденных ранее параметров, ограничиваясь лишь вычислением нового параметра. Добавляемый член имеет вид: , где  определяется по общей формуле:

                          (3)

 В этом случае уравнение регрессии принимает вид [4]:   

                     (4)

После нахождения уравнения тренда вычисляют остаточную дисперсию по формуле:

,                   (5)

где n-m-1 - степень свободы, m - степень полинома, n - объём выборки.

Для получения Sm применяют формулу:

,                     (6)

где - значение ординаты, рассчитанное по уравнению полинома m - степени. Переход к многочленам более высокого порядка производят до тех пор, пока остаточная дисперсия продолжает уменьшаться. Если остаточная дисперсия при выравнивании по многочлену m+1 порядка по сравнению с остаточной дисперсией, полученной для уравнения порядка m, уменьшается незначительно, переход к уравнениям более высокого порядка следует прекратить и аппроксимацию считать достаточной.

Ошибка расчёта (среднеквадратическое отклонение полученной функции от экспериментальных точек) должно быть одного порядка с погрешностью введённых табличных данных, так как среднеквадратическое отклонение зависит от у, n и вида выбранной функции y*. Вычисляют среднеквадратическое отклонение  полученной теоретической кривой y* от экспериментальной у:

                        (7)

и сравнивают с погрешностью эксперимента ε. При этом возможно:

1) δn> ε- аппроксимация слишком грубая, степень полинома необходимо увеличить;

2) δn < ε - аппроксимация физически недостоверна, истинная функция "сплющена", старшие степени полинома лишние и, следовательно, надо уменьшить степень полинома;

3)  δn ≈ ε- степень полинома оптимальна.

Погрешность эксперимента рассчитывали по формуле:

,                 (8)

где yi - наблюдаемые значения,  - среднее значение введённых параметров, n - объём выборки.

Аппроксимирующая функция для строго периодической сезонной составляющей s(t) в уравнении (1) находили, используя тригонометрическую функцию, приподнятую над осью t и сдвинутую вдоль неё, в виде:

s(t) = ao + a1  + b1                (9)

В нашем случае, будучи периодической и заданной в виде таблицы, сезонная составляющая не являлась синусоидой, но была близка к ней. Изменив масштаб по оси t в  раз ( - число полупериодов сезонной составляющей) получили:

s(t) = ao + a1 cos(z) + b1sin(z)                                     (10)

Сжатие графика по оси t не изменит табличные значения s(t) и коэффициентов ao, a1, b1. Коэффициенты ao, a1, b1 определялись из уравнения (10) методом наименьших квадратов. Была получена система из трёх уравнений, после решения которой, получены формулы для расчёта коэффициентов:


b1=

a1=

ao=

zi=                     (11)

Функция s(t) определена на отрезке [1, N] не симметрично точке t=0. Поэтому, после вычисления коэффициентов по уравнениям (11), следует сдвинуть функцию s(t), заменив аргумент  в формуле (9) на выражение:

                                                (12)

Аппроксимация тригонометрическим многочленом менее точная, чем например степенная иди другая, но к ней прибегают если функция строго периодическая. Для более точного расчёта ao, a1, b1 необходимо точно определить период сезонной составляющей вводимого временного ряда.

Условие δn ≈ ε - степень полинома оптимальна, выполнялось для уравнения тренда с учётом сезонной составляющей.

Весь алгоритм расчётов по формулам 2 - 12 можно автоматизировать. Нами была составлена компьютерная программа, которая позволяет провести полиномиальную аппроксимацию высокого порядка (8 порядка и выше) значений функций заданных таблично. Используя полученное уравнение тренда, проводили прогнозирование заболеваемости. Программы составлены для ПК, работающие в среде Microsoft Windows на программном языке Visual Basik.

Для составления данной программы использована база данных «Tumklech» [8]. Фактическая заболеваемость КЭ была переведена в показатели заболеваемости на 100 тыс. населения. Анализ тренда проводили в два этапа: определяли наличие тренда и выделяли тренд. Для определения наличия тренда использован критерий Стьюдента, позволяющий выявить различие выборочных средних двух половинок временного ряда. Если различие значимо, то гипотеза о наличии тренда не отвергалась. Для выделения тренда использовали модель простого статистического ряда и аддитивную модель временного ряда (временной ряд с сезонной составляющей).

В динамике заболеваемости КЭ характерна трехлетняя цикличность и в течение сезона года (с 1.04 по 30.09) также наблюдались колебания в показателях заболеваемости. Усреднив значения ряда в соответствии с трёхлетней цикличностью, получим сезонные колебания заболеваемости для каждого года трехлетнего цикла [7]. Однако для долгосрочного прогноза, предложенный способ прогноза будет недостаточно точным.

Известно, что в природе существуют циклические колебания погоды, связанные с цикличностью излучения Солнца. Большой цикл Солнца длится 11 лет. Он связан с цикличностью образования солнечных пятен. 1979-1982 годы максимальной активности; 1986-1987 годы минимальной активности. В настоящее время Солнечная активность минимальная [6].

Методом дисперсионного анализа нами также установлено наличие многолетнего цикла в динамике заболеваемости КЭ. В 1999г. наблюдалась максимальная заболеваемость КЭ во всех климатических подзонах юга Тюменской области.

Применение многолетней цикличности к нашим расчётам, означает усложнение модели временного ряда ещё одной составляющей, зависящей от многолетней цикличности. В этом случае прогноз модели будет точнее. Условно назовём эту модель - аддитивная модель с двумя составляющими. Уравнение этой модели:

y(t) =f(t) + e1(t) + e2(t),                                                 (13)

где ε1(t) - сезонная составляющая с трёхлетним периодом, ε2(t) -сезонная составляющая с многолетним периодом. Данная модель может быть использована для долгосрочного прогнозирования заболеваемости КЭ.

СПИСОК ЛИТЕРАТУРЫ:

  1. Болотин Е.И., Цициашвили Г.Ш., Голычева И.В. // Паразитология. - 2002. - Т.36.- Вып. 2. - С.89.
  2. Большев Л.Н., Гольдфарб Л.Г. // Вопросы эпидемиологии и профилактики клещевого энцефалита. - М., 1970. - С. 154.
  3. Большев Л.Н., Гольдфарб Л.Г., Круопис Ю.И. // Вопросы эпидемиологии и профилактики клещевого энцефалита. - М., 1970. - С. 171.
  4. Венецкий И.Г., Кильдишев Г.С. Теория вероятности и математическая статистика. - М., «Статистика». - 1975. - 264 с.
  5. Ивашев-Мусатов О.С. Теория вероятности и математическая статистика. - М., «Наука». - 1979. - 254 с.
  6. Ишков В.Н. «Вселенная и мы» http://www.астронет.ru/ / Солнце в текущем 23 цикле солнечной активности.
  7. Козлов Л.Б., Кашуба Э.А., Цокова Т.Н. и др. Способ прогноза заболеваемости клещевыми инфекциями // Патент RU 2294697 С2. - Бюл. № 7 от 10.03.2007г.
  8. Козлов Л.Б., Цокова Т.Н., Огурцов А.А. и др. / Заболеваемость клещевым энцефалитом в Тюменской области «Tumklech» // База данных. - Свидетельство №2007620363 от 18.10.2007. - Правообладатель: ФГУЗ «Центр гигиены и эпидемиологии в Тюменской области».



Отзывы (через Facebook):

Оставить отзыв с помощью аккаунта FaceBook:

ЭКОНОМЕТРИЧЕСКОЕ МОДЕЛИРОВАНИЕ

Статья в формате PDF 345 KB...

13 02 2020 15:59:25

Проблема перевода слов – реалий

Статья в формате PDF 327 KB...

02 02 2020 15:14:33

Новые виды рыбопродуктов

Статья в формате PDF 115 KB...

30 01 2020 8:53:10

РАЗВИТИЕ АРТЕРИАЛЬНОГО РУСЛА ГОЛОВНОГО МОЗГА ЧЕЛОВЕКА С 5 ПО 10 НЕДЕЛИ ВНУТРИУТРОБНОГО РАЗВИТИЯ

В статье на основании анализа серий срезов зародышей человека изучены особенности формирования артериального русла отделов головного мозга, определены возрастные критерии появления закладок как отделов головного мозга, так и основных сосудов и их ветвей в плане обоснования возможных вариантов строения артериальной сети головного мозга в онтогенезе. ...

26 01 2020 0:49:32

АНАТОЛИЙ ИВАНОВИЧ ГУСЕВ

Статья в формате PDF 426 KB...

24 01 2020 16:43:40

ПЕДАГОГИЧЕСКИЙ ТЕКСТ КАК ЭЛЕМЕНТ ОБУЧЕНИЯ

Статья в формате PDF 132 KB...

22 01 2020 12:38:19

ХАРАКТЕРИСТИКА ОВЦЕВОДСТВА РЕСПУБЛИКИ ТЫВА ПО ПОРОДНОМУ СОСТАВУ И ЗОНАЛЬНО-ТЕРРИТОРИАЛЬНОМУ РАЗМЕЩЕНИЮ ПОГОЛОВЬЯ ОВЕЦ

Представлены породный состав, структура и концентрация поголовья овец в разрезе природно-экономических зон Республики Тыва. ...

21 01 2020 3:22:36

О ВЛИЯНИИ ГЕОМАГНИТНОГО ПОЛЯ (ГМП) НА БИОТУ

Статья в формате PDF 85 KB...

14 01 2020 22:20:24

БИОДИНАМИКА ПРЫЖКОВ В ВЫСОТУ

Статья в формате PDF 657 KB...

09 01 2020 10:31:27

ИЗМЕНЕНИЯ МИКРОФЛОРЫ У БОЛЬНЫХ, ОПЕРИРОВАННЫХ НА ПОВРЕЖДЕННОЙ СЕЛЕЗЕНКЕ

Проведено изучение состояние микрофлоры у пациентов после различных операций, выполненных по поводу повреждений селезенки в отдаленном послеоперационном периоде. В результате проведенного исследования установлено, что сохранение селезенки предотвращает изменения микрофлоры, так как полученные результаты соответствовали данным группы сравнения. В тоже время, удаление селезенки приводит к нарушению микрофлоры. ...

07 01 2020 9:58:54

О РОЛИ ТЕРМИНОВ В НАУЧНО-ТЕХНИЧЕСКОЙ ЛИТЕРАТУРЕ

Статья в формате PDF 307 KB...

26 12 2019 14:21:27

ОСОБЕННОСТИ ПОДГОТОВЛЕННОСТИ СПОРТСМЕНОК ДЛЯ ДАЛЬНЕЙШЕЙ СПЕЦИАЛИЗАЦИИ НА ОЛИМПИЙСКОЙ ДИСТАНЦИИ

В статье отражены результаты комплексного исследования подготовленности спортсменок, специализирующихся в беге на 300-400 м с барьерами. Дан анализ статистически достоверных различий по педагогическим, физиологическим и биометрическим показателям в ответственейший момент спортивной карьеры - момент перехода с «детской» дистанции (бега на 300 м с барьерами) на олимпийскую дисциплину (400 м с барьерами). Выявлены взаимосвязи между различными сторонами подготовленности: физической, функциональной и технической. Представленный материал можно использовать в виде модельных характеристик для девушек в возрасте 15-16 лет и закономерностей становления спортивного мастерства при уточнении Учебной программы для детско-юношеских спортивных школ, специализированных детско-юношеских школ олимпийского резерва и школ высшего спортивного мастерства по разделу « Барьерный бег». ...

12 12 2019 18:47:44

АВТОМОБИЛЬНЫЙ ТРАНСПОРТ И КАЧЕСТВО КУРОРТА

Научно-технический прогресс приносит новый блага цивилизации и ставит новые проблемы перед ней. Автомобильный транспорт дал людям высокую степень мобильности и комфорта, за которые, однако, приходится расплачиваться ухудшением экологии. В статье изучена динамика роста численности автомобильного и грузового транспорта в городе Сочи и тот ущерб, который транспорт наносит экологии сочинского региона. ...

10 12 2019 22:26:11

КАЩЕНКО МИХАИЛ ПЕТРОВИЧ

Статья в формате PDF 319 KB...

06 12 2019 3:21:16

КРИПТОГРАФИЯ – ОТ ИЗБРАННЫХ К ШИРОКИМ МАССАМ

Статья в формате PDF 114 KB...

30 11 2019 12:58:30

КАРАМОВА ЛЕНА МИРЗАЕВНА

Статья в формате PDF 77 KB...

24 11 2019 11:53:42

ПЕРСПЕКТИВЫ ДИАГНОСТИКИ И ПРОФИЛАКТИКИ ОПУХОЛЕЙ ЯИЧНИКОВ

Предложен арсенал эмбриональных белков – потенциальных маркеров опухолей яичников. Испытано более десятка новых эмбриональных белков, но строго специфичного белка для диагностики опухолей яичников не обнаружено; наиболее перспективным маркером остается С О В А-1. Достойное внимание уделено особенностям эволюции и механизму раннего распространения опухолевого процесса. Обсуждается роль беременности – как средства профилактики опухолевого заболевания яичников. В работе предпринята попытка осмыслить истоки и логику заболевания. ...

22 11 2019 6:54:54

Кристаллографические методы исследования сперматозоидов крыс при воздействии несимметричного диметилгидразина (НДМГ)

Для определения возможности использования кристаллографического метода в оценке нарушений сперматогенеза при действии химических факторов были изучены кристаллограммы лизата сперматозоидов крыс после введения Н Д М Г в дозах 5, 25, 40 и 70 мг/кг. Экспериментальные исследования проводились на белых крысах-самцах. Анализ тезиограмм показал превалирование нарушений с увеличением введенной дозы Н Д М Г, начальные нарушения выявляются на ранних сроках, во всех диапазонах доз Н Д М Г. Максимальные нарушения прослеживаются при острой интоксикации в дозе 70 мг/кг и сроке 24 часа, о чем свидетельствует увеличение центров кристаллизации, формированием грубых монокристаллов и поликристаллов. Изменения кристаллоографической картины в тезиограммах лизата спермы крыс свидетельствуют о метаболических изменениях в сперматозоидах, развивающихся в ответ на действие Н Д М Г, что позволяет рекомендовать кристаллографические методы для оценки действия репродуктивных токсикантов и они могут служить индикаторами функционального состояния организма. ...

17 11 2019 5:34:22

СОВРЕМЕННЫЕ ТЕНДЕНЦИИ В БАНКОВСКОМ ДЕЛЕ

Статья в формате PDF 256 KB...

09 11 2019 14:11:47

СИСТЕМНЫЙ КРИЗИС В СТРОИТЕЛЬСТВЕ

Статья в формате PDF 343 KB...

05 11 2019 20:43:39

МОЛЕКУЛЯРНЫЙ СОСТАВ ВОДЫ

Статья в формате PDF 343 KB...

02 11 2019 11:19:30

ИСТОРИЯ РАЗВИТИЯ ИСТИННЫХ УЧИТЕЛЕЙ

Статья в формате PDF 104 KB...

30 10 2019 17:34:43

ИССЛЕДОВАНИЕ ОНКОЛОГИИ

Статья в формате PDF 379 KB...

29 10 2019 4:17:27

ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ УПРАВЛЕНИЯ

Статья в формате PDF 226 KB...

26 10 2019 23:53:48

ИНЖЕНЕРНАЯ ГРАФИКА (электронное учебное пособие)

Статья в формате PDF 103 KB...

22 10 2019 19:40:23

РАСПРОСТРАНЕНИЕ ПОЛИМОРФИЗМА ИНТЕРЛЕЙКИНА – 8 – 251 ТА СРЕДИ ЖЕНЩИН АЗЕРБАЙДЖАНА БОЛЬНЫМИ ЭНДОМЕТРИОЗОМ

Впервые было изучено интерлейкина – 8 – 251 Т А среди женщин Азербайджана больными эндометриозом. 50 практически здоровых и 70 женщин больных эндомертиозом находились под нашем наблюдением. Исследование показали что, генетический полиморизм интерлейкина – 8 А/ Т 251 играет роль в потогенезе эндометриоза. ...

20 10 2019 4:22:48

ПРОБЛЕМЫ ИДЕНТИФИКАЦИИ МОДЕЛЕЙ РАСПРЕДЕЛЕНИЯ СЛУЧАЙНЫХ ВЕЛИЧИН С ПРИМЕНЕНИЕМ СОВРЕМЕННОГО ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ

Рассмотрены некоторые проблемы идентификации моделей распределения данных, при использовании современного математического аппарата для решения этой задачи. Показано, что использование методов нелинейной оптимизации для идентификации моделей приводит к улучшению результатов идентификации, но одновременно, изменяет формальную постановку задачи. Выделено три группы проблем, связанных с выбором критериев согласия, их критических значений и проверкой адекватности получаемых моделей. Проанализированы возможные подходы к решению этих проблем. ...

18 10 2019 4:15:32

СИСТЕМНАЯ МЕДИЦИНА В САНАТОРНО-КУРОРТНОЙ ПРАКТИКЕ

Статья в формате PDF 144 KB...

03 10 2019 1:30:20

ФУНКЦИИ СЕТЕВОГО ТРОЛЛИНГА

Статья в формате PDF 257 KB...

02 10 2019 8:30:48

Еще:
Обзоры -1 :: Обзоры -2 :: Обзоры -3 :: Обзоры -4 :: Обзоры -5 :: Обзоры -6 :: Обзоры -7 :: Обзоры -8 :: Обзоры -9 :: Обзоры -10 :: Обзоры -11 ::

Последовательность подготовки научной работы может быть такой:

Выбор темы. Это важный этап. Во-первых, тема должна быть интересна не только вам, но и большинству слушателей, которым вы будете её докладывать, чтобы вы видели заинтересованность в их глазах, а не откровенную скуку.

Выбор целей и задач своей научной работы. То есть, нужно сузить тему. Например, тема: «Грудное вскармливание», сужение темы: «Грудное вскармливание среди студенток нашего ВУЗа». И если общая тема мало кому интересна, то суженная до рамок собственного института или университета, она становится интересной практически для всех слушателей. Целью может стать: «Содействие оптимальным условиям вскармливания грудью детей студентов нашего ВУЗа», а задачей — доказать, что специальные условия, созданные для кормящих студенток, не помешают их успеваемости, но уменьшат количество пропусков, академических отпусков и способствуют выращиванию здоровых детей — нашего будущего. Понятно, что эта тема подходит для студентов медицинских и педагогических ВУЗов, но и в других учебных учреждениях можно найти темы, интересные всем.

Разработать методы исследования и сбора информации. В случае с естественным вскармливанием, скорее всего, это будет анкетирование студенток, имеющих детей.

Систематизировать материал и подготовить презентацию.

Подготовиться к выступлению.

Выступить и получить: награду, удовольствие и опыт, чтобы в следующем году выступить ещё лучше и сорвать шквал аплодисментов, стать узнаваемым, а значит — более конкурентоспособным!