КОНФОРМАЦИОННАЯ ИЗОМЕРИЗАЦИЯ МЕТИЛБОРНОЙ КИСЛОТЫ > Научные обзоры
IT-Reviews    

КОНФОРМАЦИОННАЯ ИЗОМЕРИЗАЦИЯ МЕТИЛБОРНОЙ КИСЛОТЫ

Источник:
Валиахметова О.Ю. Бочкор С.А. Кузнецов В.В. Статья в формате PDF 127 KB

Интерес к монозамещенным борным кислотам и их эфирам связан с особенностями строения, обусловленными наличием частично двойной В-О связи, и комплексом практически полезных свойств [1-6]. Ранее методами рентгеноструктурного анализа [7,8], микроволновой спектроскопии [9], дифракции электронов [10,11] и дипольных моментов [12-14] было показано, что поверхность потенциальной энергии (ППЭ) монозамещенных борных кислот и их эфиров содержит в качестве главного минимума планарный цис-транс-конформер (I); концентрация менее стабильных планарных форм транс-транс- (II) и цис-цис- (III) незначительна.

Эти данные были подтверждены ab initio расчетами энергии и геометрии конформеров диоксиборана (R = R1 = H) [15]. Настоящая работа посвящена изучению путей конформационной изомеризации метилборной кислоты, CH3B(OH)2, с помощью полуэмпирического (АМ1) и неэмпирических [RHF//STO-3G, 3-21G, 6-31G(d) и 6-311G(d,p)] квантово-химических приближений в рамках пакета HyperChem [16] в условиях, моделирующих поведение молекул этого вещества в газовой фазе.

Нами установлено, что ППЭ исследуемого соединения содержит три минимума (конформеры I-III), и два максимума, отвечающих ортогональным формам IV и V.

Таблица 1. Расчетные энергетические параметры конформационной изомеризации метилборной кислоты (ккал/моль)

Параметры*

Базисы (метод RHF)

АМ1

STO-3G

3-21G

6-31G(d)

6-311G(d,p)

∆EII

∆EIII

∆EII

∆EIII

4.2

3.5

11.6

9.1

2.7

3.1

15.0

13.6

4.9

3.3

11.2

8.6

3.2

3.2

11.5

9.8

3.0

3.0

10.9

9.4

*) Относительно конформера I

Параметры конформационной изомеризации, представленные в таблице, свидетельствуют о том, что главному минимуму на ППЭ отвечает цис-транс-форма I. Конформеры II и III соответствуют локальным минимумам и менее стабильны на 3-4 ккал/моль (∆EII и ∆EIII). Наиболее высокий потенциальный барьер конформационной изомеризации, вне зависимости от расчетного базиса, лежит на пути превращения формы I в конформер II (∆EII) и отвечает ортогональной форме IV. Вместе с тем усложнение базиса расчета (за исключением результатов 3-21G) приводит к сближению стационарных точек IV и V (∆EII и ∆EIII); параллельно этому наблюдается и сближение энергетических уровней форм II и III, которые в приближениях 6-31G(d) и 6-311G(d,p) оказываются вырожденными по энергии.

Необходимо также отметить, что расчетные значения потенциальных барьеров конформационной изомеризации, полученные в приближениях 6-31G(d) и 6-311G(d,p), в целом достаточно близки к экспериментальным результатам измерения барьера вращения вокруг связи В-О в диметилборном ангидриде (8.5 ккал/моль, ЯМР 1H [17]), димезитилметоксиборанах (12.6-13.7 ккал/моль, ЯМР 1H [18] и 13С [19]), а также в диметилметоксиборане (8.9 ккал/моль, ЯМР 13С [20]). Расхождение расчетных и экспериментальных результатов можно объяснить различием в строении сравниваемых молекулярных фрагментов: с одной стороны это С-В(ОR)2, а с другой - С2В-OR. В этой связи следует особо подчеркнуть полное совпадение данных, полученных при использовании базиса 6-311G(d,p) (9.4 ккал/моль) с экспериментом для мезитилдиметоксиборана (9.4 ккал/моль [18]), поскольку в данном случае речь идет об одинаковом окружении атома бора [фрагмент С-В(ОR)2]; другими словами, учитывается электронное влияние второго атома кислорода, связанного с бором.

Таким образом, анализ конформационных превращений метилборной кислоты дает основание полагать, что преобладающей формой молекул этого соединения в газовой фазе является цис-транс-конформер I.

СПИСОК ЛИТЕРАТУРЫ:

  1. Ferrier R.J. Methods in Carbohydrate Chemistry. New York-London, 1972. V.6. P.419.
  2. Carlsohn H., Hartmann M. // Acta Polymerica. 1979. V. 30. N 7. P.420.
  3. Kliegel W. // Die Pharmazie. 1972. V.27. N 1. P.1.
  4. Matteson D.S., Soloway A.H., Tomlinson D.W., Campbell J.D., Nixon G.A. // J. Med. Chem. 1964. V.7. N 9. P.640.
  5. Caujolle F., Chanh P.H., Maciotta J.C. // Agressologie. 1969. V.10. N 2. P.155.
  6. Несмеянов А.Н., Соколик Р.А. Методы элементоорганической химии. Бор, алюминий, галлий, индий, таллий. М.: Наука, 1964. 499 с.
  7. Rettig S.J., Trotter J. // Can. J. Chem. 1977. V.55. N.12. P.3071.
  8. Звонкова З.В., Глушкова В.И. // Кристаллография. 1958. Т.3. Вып.5. С.559.
  9. Kawashima Y., Takeo H., Matsumura C. // J. Mol. Spectroscopy. 1979. V.78. N.3. P.493.
  10. Gundersen G., Jonvik T., Seip R. // Acta Chem. Scand. 1981. V.A35. N 5. P. 325.
  11. Gundersen G. // Kem. Közlem. 1978. V.49. N.2. P.261.
  12. De Moor J.E., Van Der Kelen G.P. // J. Organometal. Chem. 1967. V.9. N.1. P.23.
  13. Exner O., Jehlička V. // Coll. Chech. Chem. Comm. 1972. V.37. N.10. P.2169.
  14. Lumbroso H., Grau A. // Bull. Soc. Chim. France. 1961. N.5. P.1866.
  15. Fjeldberg T., Gundersen G., Jonvik T., Seip H.M., Saebo S. // Acta Chem. Scand. 1980. V.A34. N.8. P.547.
  16. HyperChem 7.01. Trial version. http://www.hyper.com/.
  17. Lanthier G.F., Graham W.A.G. // J. Chem. Soc. Chem. Commun. 1968. N 13. P.715.
  18. Finocchiaro P., Gust D., Mislow K. // J. Am. Chem. Soc. 1973. V.95. N 21. P.7029.
  19. Brown N.M.D., Davidson F., Wilson J.W. // J. Organometal. Chem. 1981. V.210. N 1. P.1.
  20. Stampf E.J., Odom J.D., Saari S.V., Kim Y.H., Bergana M.M., Durig J.R. // J. Mol. Struct. 1990. V.239. P.113.



Отзывы (через Facebook):

Оставить отзыв с помощью аккаунта FaceBook:


УПРАВЛЕНИЕ АДАПТИВНЫМИ ОБРАЗОВАТЕЛЬНЫМИ СИСТЕМАМИ

Статья в формате PDF 124 KB...

23 07 2021 3:34:48

РАЗВИТИЕ ЛЕСНОГО КОМПЛЕКСА В РОССИИ

Статья в формате PDF 314 KB...

20 07 2021 16:25:48

О ПРИНЦИПЕ РАБОТЫ ЛЮСТРЫ ЧИЖЕВСКОГО

Статья в формате PDF 141 KB...

16 07 2021 19:11:34

ТЕПЛОВОЙ РАЗГОН В ЩЕЛОЧНЫХ АККУМУЛЯТОРАХ

Статья в формате PDF 121 KB...

11 07 2021 2:16:19

БИОХИМИЯ КРОВИ (учебное пособие)

Статья в формате PDF 106 KB...

04 07 2021 22:39:35

ХОЛОДОВАЯ АДАПТАЦИЯ И АДРЕНОРЕЦЕПТОРЫ

Получено, что на 30‒й день холодовой адаптации на низкие дозы норадреналина реактивность системного давления больше контроля, а на большие дозы меньше контроля. Реактивность артерий конечности была на все дозы норадреналина меньше контроля. Нами впервые показано, что прессорное действие норадреналина на периферические артерии уменьшается на все дозы после адаптации к холоду, что способствует большему кровотоку и усилению прогрева тканей. Из данной работы следует, что дозированное действие холодного климата может способствовать уменьшению спазма артерий на норадреналин и поэтому, дозированный холод может помогать в лечении гипертонической болезни. ...

30 06 2021 14:33:54

К ПРОБЛЕМЕ ОТБОРА В ХОККЕЕ

Статья в формате PDF 262 KB...

24 06 2021 11:27:45

ПРОБЛЕМЫ ИДЕНТИФИКАЦИИ МОДЕЛЕЙ РАСПРЕДЕЛЕНИЯ СЛУЧАЙНЫХ ВЕЛИЧИН С ПРИМЕНЕНИЕМ СОВРЕМЕННОГО ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ

Рассмотрены некоторые проблемы идентификации моделей распределения данных, при использовании современного математического аппарата для решения этой задачи. Показано, что использование методов нелинейной оптимизации для идентификации моделей приводит к улучшению результатов идентификации, но одновременно, изменяет формальную постановку задачи. Выделено три группы проблем, связанных с выбором критериев согласия, их критических значений и проверкой адекватности получаемых моделей. Проанализированы возможные подходы к решению этих проблем. ...

22 06 2021 12:44:26

О РОЛИ ТЕРМИНОВ В НАУЧНО-ТЕХНИЧЕСКОЙ ЛИТЕРАТУРЕ

Статья в формате PDF 307 KB...

16 06 2021 16:58:36

КЛАССИЧЕСКАЯ ФИЗИКА НА ГНИЛОМ ФУНДАМЕНТЕ (КАТАСТРОФА В МЕХАНИКЕ )

1. Второй закон Ньютона в катастрофе это неоспоримый факт. 2. Нужно думать, что после такой катастрофы вся классическая физика полетит к чёрту, вместе с физиками, которые попытаются её защищать. 3. Учёные физики всех стран попали в капкан у них дилемма: или они признают теорию Ростовцева или им грозит скамья подсудимых за ложную науку и обман человечества. ...

14 06 2021 1:36:47

Еще:
Обзоры -1 :: Обзоры -2 :: Обзоры -3 :: Обзоры -4 :: Обзоры -5 :: Обзоры -6 :: Обзоры -7 :: Обзоры -8 :: Обзоры -9 :: Обзоры -10 :: Обзоры -11 ::

Последовательность подготовки научной работы может быть такой:

Выбор темы. Это важный этап. Во-первых, тема должна быть интересна не только вам, но и большинству слушателей, которым вы будете её докладывать, чтобы вы видели заинтересованность в их глазах, а не откровенную скуку.

Выбор целей и задач своей научной работы. То есть, нужно сузить тему. Например, тема: «Грудное вскармливание», сужение темы: «Грудное вскармливание среди студенток нашего ВУЗа». И если общая тема мало кому интересна, то суженная до рамок собственного института или университета, она становится интересной практически для всех слушателей. Целью может стать: «Содействие оптимальным условиям вскармливания грудью детей студентов нашего ВУЗа», а задачей — доказать, что специальные условия, созданные для кормящих студенток, не помешают их успеваемости, но уменьшат количество пропусков, академических отпусков и способствуют выращиванию здоровых детей — нашего будущего. Понятно, что эта тема подходит для студентов медицинских и педагогических ВУЗов, но и в других учебных учреждениях можно найти темы, интересные всем.

Разработать методы исследования и сбора информации. В случае с естественным вскармливанием, скорее всего, это будет анкетирование студенток, имеющих детей.

Систематизировать материал и подготовить презентацию.

Подготовиться к выступлению.

Выступить и получить: награду, удовольствие и опыт, чтобы в следующем году выступить ещё лучше и сорвать шквал аплодисментов, стать узнаваемым, а значит — более конкурентоспособным!