IT-Reviews    

УНИВЕРСАЛЬНЫЙ ХАРАКТЕР РЕКУРРЕНТНЫХ ЗАВИСИМОСТЕЙ ФИЗИКО-ХИМИЧЕСКИХ СВОЙСТВ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

Зенкевич И.Г. Уникальные возможности линейных рекуррентных уравнений первого порядка А(n+1) = aA(n) + b позволяют характеризовать закономерности изменения различных свойств органических соединений (А) не только в пределах локальных групп гомологов, но и одновременно всех рядов с одинаковыми гомологическими разностями. Более того, рекуррентные соотношения применимы к функциям не только целочисленных (число атомов углерода в молекуле), но и равноотстоящих значений аргументов A(x+Δx) = aA(x) + b, (Δx = const). Этот способ аппроксимации проиллюстрирован на примерах температурных зависимостей растворимости различных веществ в воде и даже времен релаксации в высокочастотных полях. Статья в формате PDF 153 KB

Возможности применения линейных рекуррентных уравнений первого порядка A(n+1) = aA(n) + b для аппроксимации практически любых констант органических соединений выходят за пределы локальных групп гомологов. Единые уравнения этого вида описывают вариации свойств всех гомологов любых рядов. Более того, рекуррентные соотношения применимы к функциям не только целочисленных (число атомов углерода в молекуле, n), но и равноотстоящих значений непрерывных аргументов (температура, давление, состав) A(x+Δx) = aA(x) + b, (Δx = const), что позволяет распространить их на температурные зависимости растворимости различных веществ в воде и даже времени релаксации в высокочастотных полях.

Рекуррентные соотношения, определяющие каждое из чисел различных последовательностей как функцию предыдущих членов тех же последовательностей, хорошо известны в математике. В соответствии с таким определением, они применимы только к функциям целочисленных аргументов. Удивительно, что до 2005 г. примеры их использования в химии неизвестны, хотя одним из самых «естественных» целочисленных аргументов является число атомов углерода в молекулах гомологов органических соединений (n). Первые же попытки [1,2] применения простейших линейных (первого порядка) рекуррентных соотношений вида (1) к разным свойствам гомологов показали, что они обеспечивают аппроксимацию физико-химических констант органических соединений в пределах различных таксономических групп с коэффициентами корреляции (r) выше 0.999, т.е. с точностью, сравнимой с современным уровнем межлабораторных погрешностей их определения:

A(n+1) = a A(n) + b                 (1)

Уравнение (1) применимо к различным свойствам не только однорядных нормальных линейных гомологов (с общей формулой RX, где Х - постоянная для ряда функциональная группа или фрагмент структуры, R = CnH2n+1 = варьируемый алкильный радикал), но и в пределах групп многорядных гомологов (RnY, n > 1), равно как внедрения [X(CH2)nY, n ≠ const] и циклических [цикло-(CH2)nZ, n ≠ const ] [3]. Более того, установлено, что степень общности соотношений вида (1) существенно выходит за пределы перечисленных локальных таксономических групп. Они применимы для аппроксимации констант гомологов любых рядов при условии постоянства гомологических разностей (прежде всего, СН2).

На рис. 1а представлена графическая иллюстрация единой рекуррентной зависимости нормальных температур кипения (Ткип) соединений 10 наиболее подробно охарактеризованных гомологических рядов (алканы, алкены, арены, все алкилгалогениды RHal, Hal = F, Cl, Br, I, алканолы, алканали и алканоны) в диапазоне температур от -50 до 350 0С (общее число точек 189) [1]. Параметры уравнения (1) для этой совокупности данных равны:

a = 0.930 ± 0.002; b = 33.5 ± 0.3;

r = 0.9995; S0 = 2.4

Такая линейная зависимость эквивалентна существованию универсального простого метода оценки Ткип практически любых органических соединений на основании данных для предыдущих гомологов с точностью не хуже S0. Например, для предсказания Ткип N-гексиланилина C6H5NHC6H13 необходимо располагать справочным значением Ткип предшествующего гомолога - N-пентиланилина (260 0С), после чего выполнить простейшие арифметические действия:

0.93 x 260 + 33.5 ≈ 275.3

(справочное значение Ткип N-гексилани-лина 275 0С).

Аналогичное единое рекуррентное соотношение характеризует гомологичес-кие вариации Ткип перфторированных органических соединений RFX (перфторалканы, алкены, карбоновые кислоты, метилперфторал-каноаты и все перфторалкилгалогениды RFHal, Hal = Cl, Br, I). При этом коэффициенты уравнения (1) для рядов с гомологической разностью CF2 оказываются иными, чем приведенные выше коэффициенты для рядов с гомологической разностью СН2 (диапазон вариаций Ткип от -80 до 200 0С, число точек 24):

a = 0.893 ± 0.005; b = 32.1 ± 0.3;

r = 0.9997; S0 = 1.9

Следовательно, природа не функциональных групп, а именно гомологической разности определяет коэффициенты единых рекуррентных уравнений для разных рядов. Графическая иллюстрация зависимости (1) для Ткип перфторпроизводных представлена на рис. 1б.

В продолжение характеристики возможностей аппроксимации разнообразных свойств органических соединений едиными рекуррентными соотношениями для разных рядов, на рис. 2а приведен график подобной зависимости для диэлектрических проницаемостей (e, безразмерные величины) гомологов 11 рядов со следующими параметрами:

a = 0.759 ± 0.005; b = 1.03 ± 0.07;

r = 0.9988; S0 = 0.3 (55 точек)

На Рис. 2б представлен график аналогичной зависимости для значений динамической вязкости (hs, спз, 20 0С) соединений 11 рядов, параметры которого равны:

a = 1.22 ± 0.01; b = 0.03 ± 0.01; r = 0.9989; S0 = 0.04 (38 точек)

Единые рекуррентные уравнения, характеризующие вариации констант любых гомологов, существуют не только для перечисленных, но и для других свойств органических соединений. Это означает, что для оценки значений практически любых констант любых органических соединений с использова-нием данных для предыдущих гомологов вместо большого числа разнообразных и уникальных методов [4] может быть использован единый универсальный алгоритм, основаный на применении рекуррентных соотношений (1). Такой уровень обобщений в химии достигнут впервые.

Дальнейшее расширение возмож-ностей применения рекуррентных соотношений связано с их распростраением на непрерывные свойства (температура, давление, состав). Во всех таких случаях рекуррентные уравнения применимы только к равноотстоящим значениям аргумента (т.е. при Δx = const):

 

а)                                                                    б)   

Рис. 1. (а) - Графическая иллюстрация единой линейной рекуррентной зависимости Tкип(n+1) = a Ткип(n) + b нормальных температур кипения соединений 10 рядов с гомологическими разностями СН2; (б) - то же для соединений семи рядов с гомологическими разностями CF2.

 

а)                                                                    б)

Рис. 2. (а) - Графическая иллюстрация единой рекуррентной зависимости e(n+1) = a e(n) + b диэлектрических проницаемостей соединений 11 гомологических рядов; (б) - то же для зависимости hs(n+1) = a hs(n) + b динамической вязкости гомологов 11 рядов.

A(xx) = a A(x) + b              (2)

Подобное казалось бы незначительное изменение формы записи открывает совершенно новые области применения этих уравнений, например, позволяет характеризовать температурные зависимости растворимости различных веществ.

Вариации растворимости неогра-нических солей (чаще всего увеличивается), газов (уменьшается) и органических соединений (известны разные типы зависимостей) в воде при повышении температуры хорошо известны. Менее известно, что удовлетворительная аппроксимация таких зависимостей возможна только с использованием полиномов (степени n ³ 2), либо с применением достаточно «экзотических» функций, например lgy = a + b/T + сlgT, где y - мольная доля растворенного вещества, Т - абсолютная температура, К [5]. Например, для такой соли как KCl, коэффициенты приведенного уравнения равны: a = 6.75911, b = -604.3346, c = -2.357042, что дает, например, при 60 0С у = 0.100 (экспериментальное значение 0.099). Однако все данные по растворимости (выраженные непосредственно в масс. %, пересчет в мольные доли при этом не требуется) с высокой точностью могут быть аппроксимированы линейными рекуррентными уравнениями первого порядка вида (2). В Табл. 1 приведены результаты такой обработки для нескольких неорганических солей [6] (х = Т, DТ = 20 0С). Во всех случаях коэффициенты корреляции превышают 0.999, а значения генеральной дисперсии S0, характеризующие среднюю точность аппроксимации, варьируют в пределах 0.08-0.3, что составляет для большинства солей всего 0.2-0.6 % их растворимости при 20 0С.

Таблица 1. Рекуррентная аппроксимация температурной зависимости растворимости некоторых неорганических солей в воде

 

Соль

Растворимость, масс. % при различной температуре, 0С

Параметры уравнения (2) при

DТ = 20 0С

0

20

40

60

80

100

a

b

r

S0

BaCl2´2H2O

24.0

26.3

29.0

31.7

34.4

37.0

1.02±0.02

2.0±0.6

0.9993

0.17

KCl

22.2

25.5

28.7

31.3

33.8

36.0

0.90±0.01

5.6±0.4

0.9997

0.12

KIO3

4.5

7.5

11.4

15.6

19.9

24.4

1.08±0.03

3.0±0.3

0.9992

0.3

NH4Cl

23.0

27.3

31.4

35.6

39.6

43.6

0.98±0.01

4.6±0.2

0.9999

0.08

(NH4)2SO4

41.4

43.0

44.8

46.8

48.8

50.8

1.05±0.02

-0.5±0.8

0.9996

0.10

Pb(NO3)2

26.7

34.3

41.0

46.8

51.8

56.0

0.87±0.01

11.3±0.2

0.9999

0.08

Однако, в отличие от задач аппроксимации свойств гомологов органических соединений, для функций непрерывных аргументов часто требуется оценка соответствующих величин при любых промежуточных, а не обязательно равноотстоящих значениях аргументов. В рассматриваемом примере это растворимость солей в воде при температурах не кратных 20 0С. Любой расчетный метод в общем случае должен предусматривать получение таких решений.

Известно, что рекуррентное уравнение (1) имеет следующее алгебраическое решение [1-3]:

A(n) = kan + b(an-1) / (a-1)                      (3)

которое позволяет вычислять значения A(n) для любых n при известных k, a и b. Дополнительный параметр k можно получить из выражения (1) для первого члена последовательности, т.е. значения свойства А для простейшего рассматриваемого гомолога: А(1) = ka + b, откуда следует:

k = [A(1) - b] / a          (4)

Тогда, например, для растворимости такой соли как BaCl2´2H2O в воде получаем k = 21.57, а решение уравнения (3) становится возможным для любых температур в интервале 0-100 0С с ошибками не более ± 0.1-0.2:

Температура, 0С

Экспериментальное значение растворимости, масс %

Рассчитанное значение растворимости, масс. %

Ошибка

0

24.0

24.0

0.0

20

26.3

26.5

+0.2

40

29.0

29.0

0.0

60

31.7

31.6

-0.1

80

34.4

34.2

-0.2

100

37.0

36.9

-0.1

30

-

27.7

-

50

-

30.3

-

Аналогичным образом рекуррентные соотношения первого порядка применимы для аппроксимации убывающих с увеличением температуры растворимостей газов в воде [7]. В табл. 2 представлены соответствующие экспериментальные данные и параметры рекуррентных уравнений (3) при DТ = 20 0С. Как и в случае неорганических солей, коэффициенты корреляции во всех случаях превышают 0.999.

Таблица 2. Рекуррентная аппроксимация температурной зависимости растворимости некоторых газов в воде

 

Соединение

Растворимость (мл/100 г) при различной температуре, 0С

Параметры уравнения (2) при

DТ = 20 0С

0

20

40

60

80

100

a

b

r

S0

Азот

2.35

1.54

1.18

1.02

0.96

0.95

0.43±0.01

0.52±0.01

0.9992

0.01

Кислород

4.89

3.10

2.31

1.95

1.78

1.72

0.446±0.001

0.919±0.009

0.9993

0.008

Метан

5.56

3.31

2.37

1.95

1.77

1.70

0.426±0.003

0.94±0.01

0.9999

0.01

Этан

9.87

4.72

2.91

2.18

1.83

1.72

0.37±0.01

1.07±0.05

0.9990

0.06

Сероводород

467

258

166

119

91.7

81

0.48±0.01

38 ± 3

0.9990

3.8

Оксид азота (II)

7.38

4.71

3.51

2.95

2.70

2.63

0.45±0.01

1.39±0.02

0.9998

0.02

Столь универсальный характер рекуррентных соотношений, применимых для аппроксимации не только вариаций любых физико-химмических констант гомологов, но и, например, температурных зависимостей непрерывных свойств, может привести к существенному изменению методологии интерпретации данных во многих областях химии. Действительно, проверку корректности наборов различных величин нет необходимости начинать с создания уникальных физико-химических моделей соответствующих явлений. В качестве наиболее «экзотического» примера можно привести температурную зависимость времен релаксации (t) воды [8] являющихся важной характеристикой поведения веществ в высокочастотных электрических (при определении диэлектрических проницаемостей) и магнитных (в спектроскопии ЯМР) полях. Эквидистантные значения t (при неизвестных погрешностях сложных экспериментальных определений) в диапазоне температур 0-60 0С равны:

Т, 0С

0

10

20

30

40

50

60

t, пс

17.7

12.6

9.2

7.1

5.7

4.8

3.9

Вне всяких сомнений, соответству-ющая модель, описывающая диссипацию внутримолекулярных энергий за счет межмолекулярных взаимодействий, весьма сложна. Однако, как проверка корректности приведенных данных, так и, при необходимости, расчет значений t при любых других температурах возможны с использованием простейшего рекуррентного соотношения:

τ(T + ΔT) = a τ(T) + b,              (5)

где ΔT = 10 0С, a = 0.652 ± 0.006, b = 1.04 ± 0.06, r = 0.9998, S0 = 0.06

Более того, уникальные возможности рекуррентных соотношений иллюстрирует тот факт, что одно из значений τ = 3.9 пс, соответствующее Т = 60 0С, хуже всех согласуется с единой зависимостью (5). Незначительная коррекция этой величины (должно быть τ = 4.1) невозможна никаким другим методом кроме рассматриваемого.

СПИСОК ЛИТЕРАТУРЫ:

  1. Зенкевич И.Г. Общие закономерности изменения физико-химических свойств органических соединений в гомологических рядах // Журн. органич. химии. 2006. Т. 42. № 1. С. 9-20.
  2. Зенкевич И.Г. Единый закон вариаций любых свойств органических соединений в гомологических рядах. // Успехи совр. естествозн. 2006. № 7. С. 42-46.
  3. Зенкевич И.Г. Использование рекуррентных соотношений для аппроксимации свойств любых гомологов органических соединений. // Журн. общей химии. 2006. Т. 76. Вып. 11. С. 1821-1833.
  4. Рид Р., Шервуд Т. Свойства газов и жидкостей (определение и корреляция). / Пер. с англ. Л.: Химия, 1971. 703 с.
  5. Broul M., Nyvlt J., Sohnel O. Solubility in Inorganic Two-Component Systems. Amsterdam: Elsevier, 1981.
  6. Краткий справочник химика. Сост. В.И.Перельман. 7 изд. М.-Л.: Химия, 1964. 623 с.
  7. Лидин Р.А., Андреева Л.Л., Молочко В.А. Справочник по неорганической химии. М.: Химия, 1987. 320 с.
  8. Kaatze U., Uhlendorf V. The Dielectric Properties of Water at Microwave Frequences. // Z. Phys. Neue, Folge. 1981. V. 126. P. 151-165. Цит. по http://www.kayelaby.npl.co.uk/general_physics/2_6/2_6_5.html



Отзывы (через Facebook):

Оставить отзыв с помощью аккаунта FaceBook:

ДИАЛОГ КУЛЬТУР В XXI ВЕКЕ

Статья в формате PDF 281 KB...

11 12 2019 22:37:16

ИНФОРМАЦИОННЫЙ АНАЛИЗ СЛИЗИ

Статья в формате PDF 108 KB...

10 12 2019 0:53:34

Методы лазеротерапии при астматическом бронхите

Статья в формате PDF 110 KB...

07 12 2019 4:27:29

Развитие стекловидного тела глаза человека

Статья в формате PDF 111 KB...

06 12 2019 3:51:54

БИОХИМИЧЕСКИЙ АНАЛИЗ КРОВИ КРЫС ПРИ ХРОНИЧЕСКОМ ОТРАВЛЕНИИ СОЛЯМИ МОЛИБДЕНА И ХРОМА

При хроническом отравлении солями молибдена и хрома определены функциональные нарушения у экспериментальных животных. Изменения в плазме крови выявили нарушения желудочно-кишечного тракта, печени, почек, сердечной мышцы крыс. ...

27 11 2019 9:44:33

КОНФОРМАЦИОННАЯ ИЗОМЕРИЗАЦИЯ МЕТИЛБОРНОЙ КИСЛОТЫ

Статья в формате PDF 127 KB...

25 11 2019 8:29:29

ДИНАМИКА СОДЕРЖАНИЯ ДНК В ЯДРАХ КЛЕТОК СЛИЗИСТОЙ ОБОЛОЧКИ ЖЕЛУДКА ОТ ГИСТОЛОГИЧЕСКОЙ НОРМЫ ДО НЕОПЛАСТИЧЕСКИХ ИЗМЕНЕНИЙ

В статье авторы показали изменение плоидности и площади ядер слизистой оболочки желудка при фоновых, предраковых заболеваниях и раке желудка различного гистологического строения с помощью компьютерного анализатора изображения. При дисплазии тяжелой степени площадь и плоидность ядра составили 213,7±3,42 мкм² и 10,2±0,2с соответственно. При высокодифференцированной аденокарциноме эти показатели достигают 375,0±17,0 мкм² и 16,2±2,7с. Авторы предположили, что полученные данные могут быть использованы для более объективной оценки патологических процессов в слизистой желудка и дифференциальнодиагностических вопросов между дисплазиями и раком желудка. ...

24 11 2019 18:31:54

ДНИ КВАНТОВОЙ МЕДИЦИНЫ В ЕВРОПЕ

Статья в формате PDF 140 KB...

23 11 2019 17:38:45

ИСПОЛЬЗОВАНИЕ МЕТОДА ДИАГОНАЛЬНОЙ СЕГМЕНТАРНОЙ АМПЛИТУДОМЕТРИИ ДЛЯ ДИАГНОСТИКИ ФУНКЦИОНАЛЬНОГО СОСТОЯНИЯ СПОРТСМЕНОВ

Методика диагональной сегментарной амплитудометрии, заключающаяся в регистрации амплитуды колебаний активного и реактивного сопротивления тканей человеческого организма, широко используемая в медицинской практике, начинает применяться в спорте для контроля за функциональным состоянием спортсменов в различные периоды учебно-тренировочного процесса. Результаты, полученные данным методом, показывают, что различия в проводимости тканей определяются видом спорта, а также квалификацией спортсменов. Проводимость тканей более устойчива в подготовительный период по сравнению с соревновательным. Суммарная нестабильность проводимости тканей выше на соревнованиях более высокого уровня. ...

17 11 2019 11:36:44

Заживление суставного хряща при имплантации минерального компонента костного матрикса

В эксперименте на половозрелых крысах Wistar исследованы особенности регенерации суставного хряща коленного сустава после имплантации в зону повреждения гранулированного минерального компонента костного матрикса ( М К К М), полученного по оригинальной технологии. Установлено, что М К К М имеет упорядоченную высокопористую структуру, близкую к естественной архитектонике костного матрикса и химический состав, соответствующий минеральному составу кости. М К К М обладает выраженными хондро- и остеиндуктивными свойствами, обеспечивает пролонгированную активизацию репаративного процесса, ускоренное органотипическое ремоделирование и восстановление поврежденного суставного хряща. ...

16 11 2019 2:33:49

ОСНОВНЫЕ МЕХАНИЗМЫ ЭМБРИОНАЛЬНОГО ГИСТОГЕНЕЗА

Статья в формате PDF 124 KB...

11 11 2019 4:13:51

АНАЛИЗ ФОРМИРОВАНИЯ КОНКУРЕНТНОЙ СРЕДЫ ФУНКЦИОНИРОВАНИЯ ПРЕДПРИЯТИЙ ОВОЩНОГО ПОДКОМПЛЕКСА (НА ПРИМЕРЕ ИВАНОВСКОЙ ОБЛАСТИ)

В рыночной экономии предприятия действуют в условиях конкуренции. Изучая потребителей, не следует забывать о конкурентах. Конкурент – важный элемент инфраструктуры системы маркетинга, оказывающий влияние на маркетинговую стратегию предприятия в отношении товара, поставщиков, покупателей. Исследование позиций конкурентов, а так же анализ конкурентной среды, в которой действуют предприятия, охватывает широкий спектр вопросов и требует привлечения значительного объёма информации. Анализ информации, её интерпретация позволяют специалистам вывести обоснованные оценки по каждому фактору конкуренции и охарактеризовывать общее положение предприятий на рынке по отношению к основным конкурентам. ...

09 11 2019 16:36:35

СИСТЕМЫ МАШИННОГО ПЕРЕВОДА

Статья в формате PDF 266 KB...

07 11 2019 23:51:56

ОБ ОДНОЙ МОДЕЛИ РАВНОВЕСИЯ

Статья в формате PDF 137 KB...

05 11 2019 17:11:11

Туманова Анна Леоновна

Статья в формате PDF 78 KB...

03 11 2019 15:29:51

КОВАЛЕВ АНАТОЛИЙ СПИРИДОНОВИЧ

Статья в формате PDF 338 KB...

28 10 2019 6:59:29

СТОЛЯРОВ ВЛАДИМИР АЛЕКСЕЕВИЧ

Статья в формате PDF 139 KB...

24 10 2019 13:34:23

Загиров Умарасхаб Загирович

Статья в формате PDF 65 KB...

21 10 2019 5:27:43

СТРАТЕГИЯ РАЗВИТИЯ МОРСКИХ ПОРТОВ

Статья в формате PDF 110 KB...

05 10 2019 7:21:52

НЕОПРЕДЕЛЕННОСТЬ ВИДА 0/0

Статья в формате PDF 459 KB...

03 10 2019 16:14:28

СОВЕРШЕНСТВОВАНИЕ СИСТЕМЫ РАЗВИТИЯ ПЕРСОНАЛА

Статья в формате PDF 334 KB...

29 09 2019 14:19:56

К СТРАТЕГИИ ОБРАЗОВАНИЯ XXI ВЕКА

Статья в формате PDF 154 KB...

28 09 2019 13:54:29

ИСТОРИЧЕСКИЕ ВОПРОСЫ О ПРОИСХОЖДЕНИИ ХРИСТИАНСТВА

Статья в формате PDF 101 KB...

27 09 2019 14:20:11

КОНТАКТНАЯ АКТИВАЦИЯ ВЕНОЗНОЙ КРОВИ

Статья в формате PDF 119 KB...

20 09 2019 12:56:18

Анализ взаимодействия техносферы и окружающей среды

Статья в формате PDF 114 KB...

17 09 2019 20:40:21

СОВРЕМЕННЫЕ ПРОБЛЕМЫ ДИДАКТИКИ ВЫСШЕЙ ШКОЛЫ

Статья в формате PDF 164 KB...

16 09 2019 10:40:46

МИКРОЭКОЛОГИЯ ЧЕЛОВЕКА (ЧАСТЬ II)

С экологических позиций излагается представление о человеке как метасистеме, состоящей из макроскопического (тело) и микроскопического (микробиота) компонентов. Последний определяется как биоценоз микроорганизмов — бактерий, простейших, микроскопических грибов и вирусов, встречающийся у здоровых людей. Приводятся некоторые количественные характеристики микробиоты человека: общее число микроорганизмов, суммарная биомасса, процентное содержание облигатной, факультативной и транзиторной составляющих, время, за которое происходит смена генерации микроорганизмов. Рассматриваются главные системоообразующие факторы, обеспечивающие целостность микробиоты: структурный, метаболический, генетический и информационный. Анализируются взаимоотношения микробиоты и макроорганизма в нормальных физиологических условиях и при патологии. Обсуждаются механизмы развития дисбиозов и патогенетически обоснованные подходы к их коррекции. ...

15 09 2019 12:29:46

БИОТЕХНИЧЕСКИЙ ЗАКОН И ВИДЫ ФАКТОРНЫХ СВЯЗЕЙ

Статья в формате PDF 215 KB...

14 09 2019 15:52:40

ПРАКТИЧЕСКИЕ РЕЗУЛЬТАТЫ ПРОГНОЗИРОВАНИЯ НОВЫХ ОБЛАСТЕЙ ИСПОЛЬЗОВАНИЯ ИЗВЕСТНЫХ ЛЕКАРСТВ

В Федеральной службе по интеллектуальной собственности, патентам и товарным знакам осуществлена государственная регистрация оригинального алгоритма и базы данных «Drug», позволяющих прогнозировать новые виды действия известных лекарственных средств. Программа основана на сравнении набора квантово-химических и геометрических дескрипторов молекул методами многомерной статистики. Результаты работы алгоритма получили практическое подтверждение для четырех препаратов. ...

12 09 2019 14:34:13

СЛИНКИН СЕРГЕЙ ВИКТОРОВИЧ

Статья в формате PDF 161 KB...

07 09 2019 15:48:28

АНАЛЬГЕТИЧЕСКАЯ АКТИВНОСТЬ ОТВАРОВ КОРЫ И ОДНОЛЕТНИХ ПОБЕГОВ ИВЫ БЕЛОЙ

Объект исследования – ива белая, которая распространена практически по всей территории Европейской части России. За рубежом препараты и Б А Д из различных видов ивы активно применяются при заболеваниях суставов. В соответствии с Руководством по доклиническому изучению новых фармакологических веществ ( Р. У. Хабриев, 2005) оценивали эффективность анальгетического действия и токсичность отваров коры и однолетних побегов ивы белой на мышах. Отвары коры и побегов ивы относятся к классу малоопасные соединения и проявляют выраженную анальгетическую активность, сопоставимую с препаратом сравнения анальгином (метамизол). ...

06 09 2019 19:57:29

ИЗМЕНЕНИЕ СОКРАТИТЕЛЬНОЙ АКТИВНОСТИ И β-АДРЕНОРЕАКТИВНОСТИ ИЗОЛИРОВАННОГО МИОМЕТРИЯ БЕРЕМЕННЫХ ЖЕНЩИН ПОД ВЛИЯНИЕМ ОЗОНИРОВАННОГО РАСТВОРА КРЕБСА

В опытах с 19 полосками миометрия, полученных от 5 женщин в конце доношенной беременности при плановом кесаревом сечении, установлено, что озонированный ( ≈0,50 мкг/мл) раствор Кребса ингибирует спонтанную сократительную активность миометрия и существенно уменьшает стимулирующий эффект адреналина, т.е. снижает его α-адренореактивность. Это объясняет эффективность озонотерапии при угрозе прерывания беременности и дискоординированной родовой деятельности. ...

05 09 2019 12:39:16

PROBLEMS OF BIOCHEMICAL INDICATION OF STATUS OF FISHES OF NORTH BASIN

Статья в формате PDF 127 KB...

02 09 2019 2:56:28

СРАВНИТЕЛЬНЫЙ АНАЛИЗ РЕАКТИВНОСТИ АРТЕРИЙ КИШЕЧНИКА И КОНЕЧНОСТИ К МЕЗАТОНУ ПОСЛЕ 30 ДНЕЙ

После 30  дней адаптации к холоду прессорное действие мезатона на артериальное русло тонкого кишечника уменьшается исключительно за счет снижения чувствительности а1-адренорецепторов на 21 %, а количество активных а1-адренорецепторов нормализовалось. В артериях конечности изменения чувствительности и количества а1-адренорецепторов артерий к мезатону было противоположно кишечнику. Чувствительность а1-адренорецепторов артерий конечности к мезатону нормализовалась и была равна контролю. А количества активных альфа-1-адренорецепторов артерий кожно-мышечной области к мезатону было меньше контроля на 10,3 %. ...

01 09 2019 22:58:37

ЛАЗЕРНОЕ ЛЕГИРОВАНИЕ ПОВЕРХНОСТИ ТИТАНА МЕДЬЮ

Статья в формате PDF 111 KB...

31 08 2019 11:56:35

Максимальная скорость окисления оксида азота

Статья в формате PDF 344 KB...

30 08 2019 18:14:19

КЛАССИЧЕСКАЯ ФИЗИКА НА ГНИЛОМ ФУНДАМЕНТЕ (КАТАСТРОФА В МЕХАНИКЕ )

1. Второй закон Ньютона в катастрофе это неоспоримый факт. 2. Нужно думать, что после такой катастрофы вся классическая физика полетит к чёрту, вместе с физиками, которые попытаются её защищать. 3. Учёные физики всех стран попали в капкан у них дилемма: или они признают теорию Ростовцева или им грозит скамья подсудимых за ложную науку и обман человечества. ...

27 08 2019 13:33:26

Кристаллографические методы исследования сперматозоидов крыс при воздействии несимметричного диметилгидразина (НДМГ)

Для определения возможности использования кристаллографического метода в оценке нарушений сперматогенеза при действии химических факторов были изучены кристаллограммы лизата сперматозоидов крыс после введения Н Д М Г в дозах 5, 25, 40 и 70 мг/кг. Экспериментальные исследования проводились на белых крысах-самцах. Анализ тезиограмм показал превалирование нарушений с увеличением введенной дозы Н Д М Г, начальные нарушения выявляются на ранних сроках, во всех диапазонах доз Н Д М Г. Максимальные нарушения прослеживаются при острой интоксикации в дозе 70 мг/кг и сроке 24 часа, о чем свидетельствует увеличение центров кристаллизации, формированием грубых монокристаллов и поликристаллов. Изменения кристаллоографической картины в тезиограммах лизата спермы крыс свидетельствуют о метаболических изменениях в сперматозоидах, развивающихся в ответ на действие Н Д М Г, что позволяет рекомендовать кристаллографические методы для оценки действия репродуктивных токсикантов и они могут служить индикаторами функционального состояния организма. ...

26 08 2019 21:46:58

РАЗБИЕНИЕ СТРУКТУРИРОВАННОГО 3D ПРОСТРАНСТВА НА МОДУЛЯРНЫЕ ЯЧЕЙКИ И МОДЕЛИРОВАНИЕ НЕВЫРОЖДЕННЫХ МОДУЛЯРНЫХ СТРУКТУР

Обсуждаются разбиения 3D пространства на модулярные ячейки с целью последующего конструирования невырожденных модулярных 3D структур кристаллов. ...

21 08 2019 7:32:43

РОБАСТНАЯ СТАБИЛИЗАЦИЯ ДИСКРЕТНОИМПУЛЬСНЫХ СИСТЕМ

Статья в формате PDF 126 KB...

09 08 2019 19:31:24

О ФИЗИОЛОГИИ РАЗВИТИЯ ЛИМФАТИЧЕСКОЙ СИСТЕМЫ

Лимфатическая система с момента закладки является частью единой сердечно-сосудистой системы и образуется в эмбриогенезе путем выключения части первичных вен и их притоков с эндотелиальными стенками из кровотока. Неравномерный рост первичного лимфатического русла с эндотелиальными стенками, в т.ч. путем его частичной магистрализации и редукции, лежит в основе морфогенеза вариабельной дефинитивной лимфатической системы у плодов в прямой связи с закладкой лимфатических узлов. ...

30 07 2019 21:22:38

ГЕОЭКОЛОГИЧЕСКИЕ ПРОБЛЕМЫ СОВРЕМЕННОЙ РАКЕТНО-КОСМИЧЕСКОЙ ДЕЯТЕЛЬНОСТИ

К настоящему времени геофизика накопила о магнетизме Земли огромную информацию, большая часть которой получена в новейший период исследований космического пространства путём непосредственных инструментальных исследований с помощью космических летательных аппаратов, но построить на традиционных теоретических основаниях общепризнанную теорию о происхождении магнетизма Земли пока не удавалось никому [1]. Учитывая продуктивность магнитодинамического взгляда ряда фундаментальных проблем физики и многочисленных технических задач [2], можно надеяться на аналогичную продуктивность при рассмотрении некоторых из многочисленных аспектов фундаментальной проблемы стационарного геомагнетизма, среди которых первичной представляется его происхождение. ...

28 07 2019 21:58:32

МЕЖДУНАРОДНЫЙ КОНГРЕСС «ПРАКТИКУЮЩИЙ ВРАЧ»

Статья в формате PDF 251 KB...

22 07 2019 14:23:55

БИОДИНАМИКА ПРЫЖКОВ В ВЫСОТУ

Статья в формате PDF 657 KB...

20 07 2019 19:52:20

К ВОПРОСУ О МОДЕРНИЗАЦИИ РЕАЛЬНОГОСЕКТОРА ЭКОНОМИКИ РОССИИ

В статье рассматриваются теоретические и практические вопросы модернизации реального сектора экономики России. Исследуются факторы и условия, доказывающие необходимость коренных преобразований в базовых отраслях общественного производства. Раскрываются особенности функционирования реального сектора экономики в рыночных условиях современной социально-экономической системы России. Показывается роль научно-технического прогресса в формировании инновационной модели воспроизводства. Обоснована необходимость проведения действенной государственной промышленной и инновационной политики с целью создания целостной и эффективной национальной инновационной системы; создания системы экономических стимулов для производителей при вовлечении в гражданско-правовой оборот результатов интеллектуальной деятельности и обеспечения государственной поддержки дальнейшего развития национальной инновационной инфраструктуры. ...

19 07 2019 5:39:37

ИЗМЕНЕНИЕ КАПСУЛЫ СЕЛЕЗЕНКИ В УСЛОВИЯХ ХРОНИЧЕСКОЙ АЛКОГОЛЬНОЙ ИНТОКСИКАЦИИ

Статья посвящена актуальной проблеме – влиянию хронической алкогольной интоксикации на изменение структуры капсулы селезенки в раннем постнатальном онтогенезе. Дана сравнительная гистологическая характеристика капсулы с учетом зависимости изменений от различной концентрации потребляемого алкоголя. ...

17 07 2019 10:59:33

Еще:
Обзоры -1 :: Обзоры -2 :: Обзоры -3 :: Обзоры -4 :: Обзоры -5 :: Обзоры -6 :: Обзоры -7 :: Обзоры -8 :: Обзоры -9 :: Обзоры -10 :: Обзоры -11 ::

Последовательность подготовки научной работы может быть такой:

Выбор темы. Это важный этап. Во-первых, тема должна быть интересна не только вам, но и большинству слушателей, которым вы будете её докладывать, чтобы вы видели заинтересованность в их глазах, а не откровенную скуку.

Выбор целей и задач своей научной работы. То есть, нужно сузить тему. Например, тема: «Грудное вскармливание», сужение темы: «Грудное вскармливание среди студенток нашего ВУЗа». И если общая тема мало кому интересна, то суженная до рамок собственного института или университета, она становится интересной практически для всех слушателей. Целью может стать: «Содействие оптимальным условиям вскармливания грудью детей студентов нашего ВУЗа», а задачей — доказать, что специальные условия, созданные для кормящих студенток, не помешают их успеваемости, но уменьшат количество пропусков, академических отпусков и способствуют выращиванию здоровых детей — нашего будущего. Понятно, что эта тема подходит для студентов медицинских и педагогических ВУЗов, но и в других учебных учреждениях можно найти темы, интересные всем.

Разработать методы исследования и сбора информации. В случае с естественным вскармливанием, скорее всего, это будет анкетирование студенток, имеющих детей.

Систематизировать материал и подготовить презентацию.

Подготовиться к выступлению.

Выступить и получить: награду, удовольствие и опыт, чтобы в следующем году выступить ещё лучше и сорвать шквал аплодисментов, стать узнаваемым, а значит — более конкурентоспособным!