IT-Reviews    

ИССЛЕДОВАНИЕ ЗАВИСИМОСТИ КОЭФФИЦИЕНТОВ ЛИНЕЙНОЙ МОДЕЛИ ПАРНОЙ РЕГРЕССИИ ОТ ПАРАМЕТРОВ ФУНКЦИИ ВЕЙЕРШТРАССА-МАНДЕЛЬБРОТА ПРИ МОДЕЛИРОВАНИИ СРЕДНЕГО ЗНАЧЕНИЯ ФУНКЦИИ С ПОМОЩЬЮ ЕЕ ФРАКТАЛЬНОЙ РАЗМЕРНОСТИ

Рекомендуем: Как снять передний бампер Лада Калина
Источник:
Седельников А.В. Подлеснова Д.П. Ярош Н.С. Статья в формате PDF 151 KB

Введение

При моделировании микроускорений с помощью действительной части фрактальной функции Вейерштрасса-Мандельброта (ФВМ) [1]:

   (1)

важно грамотно провести отождествление параметров функции (1) и реальных условий процесса возникновения поля микроускорений внутри КА.

Рисунок 1. Динамика изменения среднего значения ФВМ

Этой теме, равно как и возможности использовании ФВМ в виде (1) при тождественно равной нулю случайной фазе, посвящен ряд работ [2-5], с которыми можно ознакомиться для понимания решаемой задачи. В работе [4] были получены корреляционные зависимости между средним значением ФВМ (1) и фрактальной размерностью D (рис. 1).

Как видно из рис. 1, они практически линейны. Этот факт доказывается с помощью коэффициента детерминации, который при оценке качества моделирования корреляционных зависимостей рис. 1 во всех случаях превышает 0,999 (рис. 2).

Как видно из рис. 1, они практически линейны. Этот факт доказывается с помощью коэффициента детерминации, который при оценке качества моделирования корреляционных зависимостей рис. 1 во всех случаях превышает 0,999 (рис. 2).

Рисунок 2. Зависимость коэффициента детерминации от параметра b при моделировании корреляционных зависимостей рис.1 линейной моделью парной регрессии

Постановка задачи

Для построения функциональной зависимости между фрактальной размерностью ФВМ D и средним значением ФВМ (1) с помощью линейной модели парной регрессии вида:

     (2)

требуется исследовать влияние параметра b ФВМ на коэффициенты  и  правой части (2), исходя из полученных ранее корреляционных зависимостей рис. 1.

Основные результаты работы

Как видно из рис. 1, оба исследуемых коэффициента с ростом b изменяются. Для аппроксимации корреляционной зависимости  и b (рис. 3)

Рисунок 3. Корреляционная зависимость коэффициента а1 от параметра b

Была сначала построена линейная модель:

    (3)

и с помощью метода наименьших квадратов (МНК) оценены коэффициенты  и , которые получились равными: ; . Таким образом, наилучшая с точки зрения МНК линейная зависимость коэффициента  от b имеет вид:

    (4)

Затем была предпринята попытка улучшить качество аппроксимации за счет учета квадратичного члена, заменив зависимость (3) на квадратичную вида:

,    (5)

для которой также с помощью МНК были оценены коэффициенты: ; ; . Таким образом, наилучшая с точки зрения МНК квадратичная зависимость коэффициента  от b имеет вид:

   (6)

И, наконец, был произведен учет кубического члена с помощью зависимости:

,     (7)

При этом коэффициенты, найденные с помощью МНК, оказались равными: ; ; ; .

Таким образом, наилучшая с точки зрения МНК кубическая зависимость коэффициента  от b имеет вид:

     (8)

Качество построенных зависимостей (4), (6) и (8) проверялось с помощью коэффициента детерминации (рис. 4) и критерия согласия -Пирсона (рис. 5).

Рисунок 4. Изменение коэффициента детерминации при усложнении формы модели зависимости коэффициента а1 от параметра b

Усложнение модели связано, прежде всего с высоким качеством аппроксимации корреляционных зависимостей рис. 1 моделью (2). Значения коэффициентов детерминации для линейной и квадратичной моделей составили 0,979 и 0,998 соответственно, что ниже значений коэффициентов детерминации, рассчитанных при моделировании (рис. 2). И только модель (8) позволяет с уверенностью сделать вывод о том, что потерь качества при замене коэффициента  на правую часть (8) не будет, т.к. значение коэффициента детерминации составляет 0,9995.

Рисунок 5. Динамика изменения наблюдаемого значения критерия согласия при усложнении модели

Критерий согласия еще более наглядно показывает улучшение качества моделирования при усложнении формы модели. Критическое значение критерия для рассматриваемых двух степеней свободы равно 5,99147 (5 %-й уровень значимости). Наблюдаемое значение критерия для линейной модели (4) составляет 5,613, что очень близко к критическому, несмотря на высокое значение коэффициента детерминации. Для квадратичной модели (6) величина наблюдаемого значения критерия сокращается более, чем в десять раз: 0,505 и почти в четыре раза сокращается еще для кубической модели (8): 0,130.

Таким образом, проверка качества построенных моделей (4), (6) и (8) показала, что лишь последняя из них достаточно точно описывает динамику изменения коэффициента  в модели (2).

Следующим этапом является исследование зависимости другого параметра  модели (2) от b. При замене корреляционных зависимостей рис.1 на функциональные вида (2) была построена зависимость изменения  при различных значениях b. Эта зависимость приведена на рис. 6.

Рисунок 6. Корреляционная зависимость коэффициента а0 от параметра b

Аналогично схеме построения зависимости  от b, сначала была исследована линейная зависимость, подобная (3). С помощью МНК подобраны коэффициенты этой модели:

      (9)

Затем были подобраны лучшие с точки зрения МНК коэффициенты квадратичной зависимости, подобной (5):

     (10)

и кубической зависимости, подобной (7):

      (11)

Качество построенных моделей (9), (10) и (11) оценивалось с помощью коэффициента детерминации (рис. 7) и критерия согласия -Пирсона (рис. 8).

Рисунок 7. Изменение коэффициента детерминации при усложнении формы модели зависимости коэффициента а0  от параметра b

Рисунок 8. Динамика изменения наблюдаемого значения критерия согласия при усложнении модели

Таким образом, в результате данной работы построена модель зависимости среднего значения ФВМ от параметров функции:

Причем, данная модель объясняет более 99,9% дисперсии корреляционных зависимостей рис.

СПИСОК ЛИТЕРАТУРЫ

  1. Седельников А.В., Бязина А.В., Антипов Н.Ю. Использование функции Вейерштрасса-Мандельброта для моделирования микроускорений на борту КА //Сборник научных трудов X Всероссийского научно-технического семинара по управле­нию движением и навигации ЛА. Самара. 2002. с. 124-128.
  2. Седельников А.В., Корунтяева С.С., Чернышева С.В. Анализ влияния параметров функции Вейерштрасса-Мандельброта на ее закон распределения //Современные наукоемкие технологии. - 2005 г. - № 9. - с. 43-46.
  3. Седельников А.В., Бязина А.В., Иванова С.А. Статистические исследования микроускорений при наличии слабого демпфирования колебаний упругих элементов КА //Научные чтения в Самарском филиале РАО. - Часть 1. Естествознание. - М.: Изд. УРАО. - 2003. - 137 - 158.
  4. Седельников А.В., Корунтяева С.С., Подлеснова Д.П. Исследование динамики изменения среднего значения фрактальной функции Вейерштрасса-Мандельброта как случайной величины //Фундаментальные исследования. - № 4. - 2006. - с. 84-87.
  5. Седельников А.В., Корунтяева С.С., Чернышева С.В. Выявление коридора значений параметров фрактальной функции Вейерштрасса-Мандельброта, при которых справедлив нормальный закон распределения функции //Современные наукоемкие технологии. - № 1. - 2006. - с. 85-87.



Отзывы (через Facebook):

Оставить отзыв с помощью аккаунта FaceBook:


ЭЛЕМЕНТЫ ТЕОРИИ ПРУЖИННЫХ ТРАНСПОРТЕРОВ

Статья в формате PDF 114 KB...

17 06 2021 22:25:56

МОДЕЛИРОВАНИЕ ЦЕЛОСТНОГО ОБРАЗОВАТЕЛЬНОГО ПРОСТРАНСТВА

В настоящее время важно пройти сложнейший этап перехода к новому типу социально-экономического развития быстро, компетентно, опираясь на собственные творческие возможности. Именно этим целям служит разработанная нами модель педагогических основ формирования целостного образовательного пространства, основу которого составляет внедрение непрерывного образования в интегрированном профессиональном учебном заведении. Моделирование целостного образовательного пространства осуществлялось нами через уточнение таких понятий, как «интеграция», «межпредметные связи», «взаимосвязь», интегративно-педагогические закономерности, интегративная деятельность, через изучение опыта зарубежных исследователей, решающих проблемы педагогической интеграции. ...

13 06 2021 18:50:41

ПРОПАГАНДА ПРАВОВЫХ ЗНАНИЙ В ВУЗЕ, КОЛЛЕДЖЕ, ШКОЛЕ

Статья в формате PDF 125 KB...

08 06 2021 21:48:51

КОМПЬЮТЕРНАЯ ДИАГНОСТИКА МИКРОКЛИМАТА ПОМЕЩЕНИЙ

Статья в формате PDF 237 KB...

04 06 2021 14:10:30

МЕТОДИКА ПРЕПОДАВАНИЯ DELPHI: ОТ ПРОСТОГО К СЛОЖНОМУ

Статья в формате PDF 425 KB...

29 05 2021 6:51:46

ВЫВОД УРАВНЕНИЙ МАКСВЕЛЛА ИЗ ФУНКЦИИ СОСТОЯНИЯ. ЗАРЯДОВАЯ ФУНКЦИЯ СОСТОЯНИЯ И ЕЁ СВЯЗЬ С ЗАКОНОМ СОХРАНЕНИЯ ЗАРЯДА

На основе введённых функций состояния для электромагнитного поля и зарядовой функции состояния для частиц выведена полная система уравнений Максвелла для электродинамики. Показано, что закон сохранения зарядов есть следствие существования этой функции. Показано также, что в вакууме электромагнитное поле отсутствует, что подтверждает справедливость теории дальнодействия. ...

28 05 2021 19:13:57

СУБЪЕКТИВНЫЕ БАРЬЕРЫ ОБЩЕНИЯ У ПОДРОСТКОВ

Статья в формате PDF 114 KB...

25 05 2021 3:59:55

ОПРЕДЕЛЕНИЕ МОМЕНТА ТРЕНИЯ В ПОДШИПНИКАХ КАЧЕНИЯ

Статья в формате PDF 294 KB...

24 05 2021 11:46:42

ОСОБЕННОСТИ МИКРОФИЛЬМИРОВАНИЯ УГАСАЮЩИХ ДОКУМЕНТОВ

В статье рассматривается вопрос долговременного архивного хранения угасающих документов. Проанализированы сложности, возникающие при их микрофильмировании. Предложена методика предварительной компьютерной обработки сканированных изображений таких документов, обеспечивающая повышение качества их визуального восприятия до требований государственного стандарта к микрофильмируемым оригиналам. Обработанные изображения в дальнейшем могут быть выведены на фотоплёнку с использованием COM-систем (Computer Output Microfilm), либо распечатаны на бумажный носитель и микрофильмированы обычным способом. ...

22 05 2021 6:52:30

Статистические закономерности хронологии космонавтики

В статье описана и исследована методами математической статистики хронологическая аномалия космонавтики. Обоснован биномиальный закон распределения числа хронологических совпадений. Показано, что вероятность случайного появления рассматриваемых совпадений весьма мала. Метод исследования, применяемый в работе, преимущественно основан на статистическом анализе хронологии при помощи параметризации дат событий и проверки соответствующего критериального свойства. Используются параметры: условные номера дней с начала летоисчисления N, с начала года n и год Г. Основными информативными параметрами являются интервалы времени между событиями. Обоснован биномиальный закон распределения числа хронологических совпадений. Показано, что вероятность случайного появления рассматриваемых совпадений весьма мала. ...

19 05 2021 6:46:14

РОЛЬ МСФО В РОССИИ

Статья в формате PDF 133 KB...

16 05 2021 10:42:16

ПУТИ ИСПОЛЬЗОВАНИЯ СЕМЯН ОБЛЕПИХИ НА ПИЩЕВЫЕ ЦЕЛИ

Статья в формате PDF 100 KB...

06 05 2021 23:45:54

ПЕРВОЕ НАЧАЛО ТЕРМОЛЕВИТАЦИИ

Статья в формате PDF 114 KB...

02 05 2021 3:37:38

Еще:
Обзоры -1 :: Обзоры -2 :: Обзоры -3 :: Обзоры -4 :: Обзоры -5 :: Обзоры -6 :: Обзоры -7 :: Обзоры -8 :: Обзоры -9 :: Обзоры -10 :: Обзоры -11 ::

Последовательность подготовки научной работы может быть такой:

Выбор темы. Это важный этап. Во-первых, тема должна быть интересна не только вам, но и большинству слушателей, которым вы будете её докладывать, чтобы вы видели заинтересованность в их глазах, а не откровенную скуку.

Выбор целей и задач своей научной работы. То есть, нужно сузить тему. Например, тема: «Грудное вскармливание», сужение темы: «Грудное вскармливание среди студенток нашего ВУЗа». И если общая тема мало кому интересна, то суженная до рамок собственного института или университета, она становится интересной практически для всех слушателей. Целью может стать: «Содействие оптимальным условиям вскармливания грудью детей студентов нашего ВУЗа», а задачей — доказать, что специальные условия, созданные для кормящих студенток, не помешают их успеваемости, но уменьшат количество пропусков, академических отпусков и способствуют выращиванию здоровых детей — нашего будущего. Понятно, что эта тема подходит для студентов медицинских и педагогических ВУЗов, но и в других учебных учреждениях можно найти темы, интересные всем.

Разработать методы исследования и сбора информации. В случае с естественным вскармливанием, скорее всего, это будет анкетирование студенток, имеющих детей.

Систематизировать материал и подготовить презентацию.

Подготовиться к выступлению.

Выступить и получить: награду, удовольствие и опыт, чтобы в следующем году выступить ещё лучше и сорвать шквал аплодисментов, стать узнаваемым, а значит — более конкурентоспособным!