IT-Reviews    

МАТЕМАТИЧЕСКАЯ МОДЕЛЬ ОРГАНИЗАЦИИ ЛИЧНОСТНО-ОРИЕНТИРОВАННОГО ОБУЧЕНИЯ УЧАЩИХСЯ НА ГИПЕРГРАФАХ

Омельченко Г.Г. Салпагаров С.И. В настоящей статье представлена многокритериальная математическая модель организации личностно-ориентированного обучения учащихся. Построена экстремальная модель на языке теории гиперграфов. Статья в формате PDF 120 KB

Цели и задачи современного образования, положенные в основу концепции личностно-ориентированного обучения школьников, направлены на разрешение противоречий между базой знаний, умений и навыков, которые закладывает традиционная школа, и постоянно меняющимися требованиями, предъявляемыми к личности современными общественно-экономическими отношениями. Возникающие противоречия между уникальностью каждой личности и авторитарной методикой обучения с её набором педагогических штампов усиливают направленность школьного образования на его гуманизацию, на формирование личности ученика как наивысшей ценности. Изменения в целевых установках общеобразовательной школы, ориентация на создание оптимальных условий для развития творческого потенциала ребёнка с учётом его индивидуальных особенностей определили тему данной работы.

На пути реализации личностно-ориентированного обучения администрацией школы и педагогическим коллективом решается множество задач. Одной из них является задача оптимального назначения учителей-предметников в классы. Решение этой задачи особенно важно при переходе параллели классов из начальной в общеобразовательную школу.

В конце учебного года учителем и школьным психологом с помощью анкетирования, тестов и итоговых оценок проводится диагностика обучаемости, обученности, а также способности учащихся самостоятельно учиться, которая выражается показателем эффективности самостоятельной умственной деятельности. Полученные при этом результаты каждой диагностики классов заносятся в таблицу, что позволит учителю в дальнейшем наиболее целесообразно спланировать свою работу с классом по формированию необходимых знаний, умений и навыков по предмету, включая самоконтроль и самоуправление развитием. Более того, совокупность всех результатов диагностики позволяет ставить вопрос о наиболее целесообразном распределении учителей по классам рассматриваемой параллели с учетом их профессионального мастерства.

Исходными данными для построения математической модели организации личностно-ориентированного обучения в школе являются:

 - множество учителей, назначаемых в классы данной параллели.

 - множество современных педагогических технологий обучения [1]. Например, технология модульного обучения, интегральная технология, технология обучения с применением глобальных информационных сетей, технология уровневой дифференциации и методики диагностического целеполагания.

 - множество классов данной параллели. Классы на основании результатов проведённых тестов отнесены к одному из уровней  сформированности учебно-организационных умений. Множество этих уровней  определяется следующим образом:  - у учащихся отсутствует мотивация учебной деятельности;  - учащиеся работают на репродуктивном уровне;  - учащиеся работают на конструктивном уровне;  - учащиеся работают на творческом уровне.

Сформулируем следующую задачу. В каждый класс  требуется назначить одного из учителей , рекомендуя ему использовать в процессе обучения одну из технологий  с учетом психолого-педагогических характеристик этого класса. Результатом такого назначения должно стать повышение уровня мотивации учебной деятельности, эффективности обучения в школе, повышение уровня обученности и самостоятельной умственной деятельности учащихся.

В математической постановке задачи используются следующие понятия и обозначения теории гиперграфов [2]:  - гиперграф с множеством вершин  и множеством рёбер ; рёбра  представляют собой подмножества множества V, т.е. . Если каждое ребро  гиперграфа G состоит из  вершин, то гиперграф G называют -однородным. При  этот гиперграф G является 3-однородным; 3-однородный гиперграф G называется 3-дольным, если множество вершин V разбито на три подмножества VS,  так, что в каждом ребре  его вершины принадлежат различным долям, т.е. , . В этом случае гиперграф G будем обозначать через .

В гиперграфе  звездой называется такая его часть , , в которой любые ребра  пересекаются в одной и той же вершине , называемой центром звезды, т.е. мощность , и не пересекаются ни в какой вершине . Звезда называется простой, если всякая пара ребер  пересекается только в одной вершине . Степенью звезды называют число рёбер в ней.

В рассматриваемой задаче для данного гиперграфа  выполняются следующие условия:

1) в каждом ребре  выделена пара вершин , называемых концевыми для этого ребра;

2) вершины  являются внутренними вершинами, и множество V2 состоит из непустых попарно непересекающихся множеств , , причем каждый элемент  однозначно соответствует некоторой технологии ;

3) концевые вершины  являются висячими вершинами;

4) для каждой вершины  из V1 указано число  такое, что принадлежащая допустимому покрытию звезда с центром в вершине  имеет степень  и при этом выполняется равенство .

Если в подгиперграфе  гиперграфа  каждая компонента связности [2] является звездой с центром в некоторой вершине , то  называем покрытием гиперграфа звездами.

Математическая модель рассматриваемой в настоящей работе задачи базируется на 3-дольном 3-однородном гиперграфе , который строится следующим образом. Вершины первой доли, т.е. , взаимно однозначно соответствуют элементам множества учителей U. Каждой вершине , соответствующей учителю , приписано число , определяемое нагрузкой учителя, а именно количеством классов рассматриваемой параллели, в которых данный учитель будет работать. Каждая вершина второй доли  однозначно соответствует некоторому элементу из множества технологий обучения T. Вершины третьей доли  взаимно однозначно соответствуют элементам множества классов K. Для построения множества рёбер  рассматриваем всевозможные тройки вершин  такие, что , , . Всякую такую тройку называем допустимой, если учитель  может вести занятия в классе , используя технологию обучения . Множество всех рёбер  определяется как множество всех допустимых троек , , .

Для определенных параметров ,  в гиперграфе  допустимым решением рассматриваемой задачи является всякий такой его подгиперграф , , , в котором каждая компонента связности представляет собой простую звезду степени  с центром . Через  обозначим множество всех допустимых решений (МДР) задачи покрытия гиперграфа G звездами.

Каждому ребру  гиперграфа  приписаны три веса , которые означают следующее:  - ожидаемое изменение коэффициента мотивации учебно-познавательной деятельности учащихся класса (в %) в случае, когда учитель, представленный вершиной , назначен в класс, представленный вершиной  с использованием технологии обучения, представленной вершиной ;  - ожидаемое изменение (в том же случае) коэффициента обученности учащихся класса (в %);  - ожидаемое изменение показателя эффективности активной самостоятельной умственной деятельности учащихся (в %) в этом же случае.

Качество допустимых решений этой задачи  оценивается с помощью векторной целевой функции (ВЦФ)

                        (1)

где  - критерий вида , , что означает ожидаемый уровень мотивации учебно-познавательной деятельности учащихся класса параллели, находящихся на самом низком уровне сформированности учебно-организационных умений;  и  - критерии вида   

 

где критерий  означает суммарное изменение ожидаемого уровня обученности учащихся всей параллели классов по предмету, а критерий  - суммарное изменение ожидаемого уровня активной самостоятельной умственной деятельности учащихся всех классов параллели.

ВЦФ вида (1) определяет в МДР  паретовское множество (ПМ) , состоящее из паретовских оптимумов (ПО)  [3]. В случае, если одинаковые по значению ВЦФ решения  считаются эквивалентными (неразличимыми), то из ПМ  выделяется полное множество альтернатив (ПМА) . ПМА  представляет собой максимальную систему векторно-несравнимых ПО из , .

Наиболее целесообразное решение выбирается из ПМА с помощью процедур теории выбора и принятия решений [4].

Литература

  1. Беспалько В.П. Педагогика и прогрессивные технологии обучения. 1995. М.: Педагогика. 98 с.
  2. Емеличев В.А., Мельников О.И., Сарванов В.И., Тышкевич Р.И. Лекции по теории графов. 1990. М.: Наука. 384 с.
  3. Емеличев В.А., Перепелица В.А.//Дискретная математика. 1994. Т. 6. вып.1. С. 3.
  4. Ларичев О.И. Наука и искусство принятия решения. 1979. М.: Наука. 200 с.



Отзывы (через Facebook):

Оставить отзыв с помощью аккаунта FaceBook:

РОЛЬ РЕГУЛЯТОРНЫХ ПЕПТИДОВ В МЕХАНИЗМАХ ПОВРЕЖДЕНИЯ ЦЕНТРАЛЬНОЙ НЕРВНОЙ СИСТЕМЫ ПРИ ЭНДОТОКСЕМИИ

Патогенез грамотрицательного септического шока рассматривается с позиций нового класса пептидов - цитокинов, инициирующих и опосредующих токсичность молекулы липополисахарида. В механизмах церебральных расстройств при септицемии цитокины считаются ключевыми медиаторами, т.к. головной мозг, наряду с другими органами, является местом активного их синтеза. Считается, что основа будущих неврологических расстройств при эндотоксемии в эксперименте и клинике формируется вначале на молекулярном уровне и затем проявляется в виде морфологического субстрата на ультраструктурном уровне. При неблагоприятном стечении обстоятельств прогрессирование процесса может привести к развитию клинической картины острой церебральной недостаточности или шокового мозга. ...

09 10 2019 23:47:17

К ЕДИНСТВУ НАУКИ ЧЕРЕЗ ВСЕ-ЕСТЕСТВОЗНАНИЕ

Статья в формате PDF 93 KB...

01 10 2019 8:52:15

ЛЕД И ЛЕДНИКИ

Статья в формате PDF 279 KB...

24 09 2019 7:33:34

ИНФОРМАЦИОННЫЙ АНАЛИЗ КРОВИ

Статья в формате PDF 113 KB...

17 09 2019 4:51:37

Оценка эффективности различных методов лечения рожи

Статья в формате PDF 117 KB...

15 09 2019 16:46:12

ЭКОЛОГИЧЕСКИЕ ПРОБЛЕМЫ ХРОМОВОГО ДУБЛЕНИЯ

Статья в формате PDF 132 KB...

30 08 2019 13:46:54

СТУПЕНЧАТЫЕ ПРЕДСТАВЛЕНИЯ НА ГРАФАХ

Статья в формате PDF 127 KB...

21 08 2019 9:20:58

ВНЕСЕНИЕ СО2 ЭКСТРАКТА РОЗМАРИНА В ХЛЕБ

Статья в формате PDF 253 KB...

18 08 2019 3:24:32

Взаимодействие науки и технологии

Статья в формате PDF 267 KB...

10 08 2019 9:29:11

МОДЕЛИ ЭВОЛЮЦИОННОЙ ЭКОЛОГИИ ДЛЯ ЦЕЛЕЙ КАРТОГРАФИИ

Статья в формате PDF 103 KB...

08 08 2019 20:13:55

СРАВНИТЕЛЬНЫЙ АНАЛИЗ ФИЗИЧЕСКОЙ НАГРУЗКИ РАЗЛИЧНОЙ НАПРАВЛЕННОСТИ НА АНТРОПОМЕТРИЧЕСКИЕ ПОКАЗАТЕЛИ У ЖЕНЩИН РАЗНЫХ ВОЗРАСТНЫХ ГРУПП С ИЗБЫТОЧНОЙ МАССОЙ ТЕЛА

Проведен анализ эффективности различных типов фитнес-программ в коррекции избыточной массы тела женщин юношеского и зрелого возраста. Применяемые физические нагрузки отличались характером нагрузки и наличию/отсутствию компонента коррекции питания. Исследовали антропометрические показатели, И М Т, определяли содержание жировой массы в организме методом калипометрии в динамике 6-месячного тренировочного цикла. Проводили промежуточные исследования: в середине, через 3 месяца от начала тренировочного цикла. В исследовании приняли участие 93 практически здоровые женщины с избыточной массой тела, не имеющие эндокринных заболеваний и противопоказаний к занятиям физической культурой. Выделены группы в зависимости от типа программы (I, II), а также подгруппы (Ia, IIa) в зависимости от возраста: 18–21 год (I и II, n = 17 и n = 17, соответственно) и 36–45 лет (Ia, IIa, n = 30 и n = 29, соответственно). Показана динамика и статистическая значимость различий в группах, проведен сравнительный анализ между группами. Выявлена более высокая физиологическая эффективность программы I, базирующейся на смешанном характере тренировки, многовариантной схеме упражнений с мониторированием и коррекцией характера питания. ...

07 08 2019 15:54:22

Сведенцов Евгений Павлович

Статья в формате PDF 294 KB...

06 08 2019 21:14:56

Правовые аспекты эвтаназии

Статья в формате PDF 102 KB...

01 08 2019 10:30:27

ЭЛЕМЕНТЫ ТЕОРИИ ПРУЖИННЫХ ТРАНСПОРТЕРОВ

Статья в формате PDF 114 KB...

31 07 2019 11:17:59

КОМПЬЮТЕРНАЯ ДИАГНОСТИКА МИКРОКЛИМАТА ПОМЕЩЕНИЙ

Статья в формате PDF 237 KB...

26 07 2019 15:46:47

ПОЦЕЛУЕВА ЛЮДМИЛА АЛЕКСАНДРОВНА

Статья в формате PDF 109 KB...

22 07 2019 14:59:43

СЕМЬЯ УЛЬЯНОВЫХ И БЛАГОТВОРИТЕЛЬНОСТЬ

Статья в формате PDF 140 KB...

08 07 2019 13:18:46

ПЯТИСТЕРЖНЕВАЯ ФЕРМА СЛОЖНОГО ТИПА

Статья в формате PDF 300 KB...

02 07 2019 5:58:13

ГИГАНТСКИЙ БЕЗОАР ЖЕЛУДКА

Статья в формате PDF 104 KB...

27 06 2019 9:37:25

УЛЬТРАСТРУКТУРНЫЕ ОСОБЕННОСТИ СТРОЕНИЯ КЛЕТОК ЭПИТЕЛИЯ ТОНКОЙ КИШКИ У ЭКСПЕРИМЕНТАЛЬНЫХ ЖИВОТНЫХ В ЗАВИСИМОСТИ ОТ ХАРАКТЕРА ВСКАРМЛИВАНИЯ (СМЕШАННОЕ, ИСКУССТВЕННОЕ)

В статье освещаются морфофункциональные особенности структуры стенки тонкой кишки в зависимости от характера вскармливания в экспериментальных условиях. Представлены собственные результаты исследования по вопросу о электронно-микроскопическом строении слоев стенки тонкой кишки при смешанном и искусственном вскармливании в эксперименте. ...

26 06 2019 6:40:24

ФАКТОРЫ ОБЕСПЕЧЕНИЯ КОНКУРЕНТОСПОСОБНОСТИ ТОВАРОВ

Статья в формате PDF 93 KB...

21 06 2019 21:32:58

ОБ ОНТОЛОГИЧЕСКОЙ СПЕЦИФИКЕ НАУКИ И ИСКУССТВА

Статья в формате PDF 129 KB...

20 06 2019 13:22:17

КАЗАНСКИЙ КРАЙ: ЯЗЫК ПАМЯТНИКОВ XVI-XVII ВЕКОВ

Статья в формате PDF 282 KB...

19 06 2019 0:54:43

ЧЕСТЬ КАК КАТЕГОРИЯ ПРАВА, ФУНДАМЕНТАЛЬНАЯ ОСНОВА ЕГО СОБЛЮДЕНИЯ

Представленная статья посвящена исследованию понятия честь в качестве фундаментальной категории права. В работе отмечено, что основой для соблюдения права, уважения к закону является честь. Данное понятие включает в себя такие качества, как целомудрие и благородство. Основным же назначением государства является защита чести своих граждан. Эта высокая миссия тесно связана с единственной целью государственности как формы человеческого бытия – с содействием духовному возрастанию человека. ...

15 06 2019 22:47:37

Хирургическое лечение острого холецистита

Статья в формате PDF 125 KB...

14 06 2019 18:58:40

ПРОБЛЕМЫ БЕЗОПАСНОСТИ ТРУБОПРОВОДНОГО ТРАНСПОРТА

Статья в формате PDF 115 KB...

07 06 2019 17:39:33

ЕГЭ КАК СОВРЕМЕННАЯ ФОРМА ПРОВЕРКИ ЗНАНИЙ

Статья в формате PDF 99 KB...

05 06 2019 16:49:33

Я И МОЁ ЗДОРОВЬЕ

В статье излагается позиция автора о необходимости максимально ответственно относиться к своему здоровью, исходя из объективных предпосылок нашего времени. ...

30 05 2019 6:37:42

РОЛЬ ОКИСЛИТЕЛЬНОГО СТРЕССА В ПАТОГЕНЕЗЕ ХРОНИЧЕСКОЙ ОБСТРУКТИВНОЙ БОЛЕЗНИ ЛЕГКИХ

В миниобзоре приведены современные тренды изучения роли окислительного стресса в патогенезе хронической обструктивной болезни легких ( Х О Б Л). Показано, что развитие окислительного стресса происходит синхронно с дисбалансом в системе протеазы/антипротеазы и взаимосвязано с нарушением обмена железа. Приведены данные, демонстрирующие нарушение регуляции антиоксидантной защиты при Х О Б Л. Показана взаимосвязь между развитием окислительного стресса и воспалением. Обсуждается гипотеза о взаимосвязи окислительного стресса, хронического воспаления и старения в механизме патогенеза Х О Б Л. ...

26 05 2019 13:16:44

КОРЯК ЮРИЙ АНДРЕЕВИЧ

Статья в формате PDF 358 KB...

24 05 2019 12:17:38

Еще:
Обзоры -1 :: Обзоры -2 :: Обзоры -3 :: Обзоры -4 :: Обзоры -5 :: Обзоры -6 :: Обзоры -7 :: Обзоры -8 :: Обзоры -9 :: Обзоры -10 :: Обзоры -11 ::

Последовательность подготовки научной работы может быть такой:

Выбор темы. Это важный этап. Во-первых, тема должна быть интересна не только вам, но и большинству слушателей, которым вы будете её докладывать, чтобы вы видели заинтересованность в их глазах, а не откровенную скуку.

Выбор целей и задач своей научной работы. То есть, нужно сузить тему. Например, тема: «Грудное вскармливание», сужение темы: «Грудное вскармливание среди студенток нашего ВУЗа». И если общая тема мало кому интересна, то суженная до рамок собственного института или университета, она становится интересной практически для всех слушателей. Целью может стать: «Содействие оптимальным условиям вскармливания грудью детей студентов нашего ВУЗа», а задачей — доказать, что специальные условия, созданные для кормящих студенток, не помешают их успеваемости, но уменьшат количество пропусков, академических отпусков и способствуют выращиванию здоровых детей — нашего будущего. Понятно, что эта тема подходит для студентов медицинских и педагогических ВУЗов, но и в других учебных учреждениях можно найти темы, интересные всем.

Разработать методы исследования и сбора информации. В случае с естественным вскармливанием, скорее всего, это будет анкетирование студенток, имеющих детей.

Систематизировать материал и подготовить презентацию.

Подготовиться к выступлению.

Выступить и получить: награду, удовольствие и опыт, чтобы в следующем году выступить ещё лучше и сорвать шквал аплодисментов, стать узнаваемым, а значит — более конкурентоспособным!