IT-Reviews    

МАТЕМАТИЧЕСКАЯ МОДЕЛЬ УРОВНЯ ПСИХИЧЕСКОЙ РЕАКЦИИ ЧЕЛОВЕКА И ЕЁ ИССЛЕДОВАНИЕ

Рекомендуем: фильм Паразиты (Корея) - пересказ сюжета, смысл
Источник:
Либерман Я.Л. Метельков В.П. В статье описывается математическая модель, связывающая уровень психической реакции с личностными характеристиками человека и с силой информационного воздействия на него. Исследуются условия устойчивости модели методами теории автоматического управления. Статья в формате PDF 139 KB

Еще Р.Кеттелом, а чуть позднее Г.Айзенком было показано [5], что реакцию человека на некоторую стимулирующую ситуацию можно описать функцией или моделью

K = f ( S, P ),

где P - характеристики личности человека, S - характеристики стимулирующей ситуации, K - ответная реакция. Конкретное выражение этой модели можно получить различными способами, в частности, экспериментально или путем рассуждений по аналогии. Попробуем отыскать его с помощью аналогии, полагая, что S - информационное воздействие. Убедительным обоснованием правомерности ее использования в таком случае служит работа Л.Куффиньяля [3], в которой он аргументировано демонстрирует сходство динамики психической реакции человека на информационное воздействие с процессом, протекающим в электрической цепи под воздействием импульса напряжения. Поскольку между электрическими процессами и процессами, происходящими в оптических, гидравлических, механических и других физических системах, также есть существенное сходство, то, следуя Куффиньялю, очевидно, можно говорить об аналогии и между психической реакцией и неэлектрическим процессом.

Пусть, далее, имеется механическая система. Если на эту систему воздействует некоторая сила X, то система приходит в движение, начинает перемещаться. При этом возникают различного рода потери, и величина перемещения Y оказывается связанной с величиной X дифференциальным уравнением динамики

где m - инерционная масса системы, r - коэффициент вязкого трения, c - жесткость, обусловленная упругими свойствами системы.

Нетрудно заметить, что если силу X интерпретировать как силу информационного воздействия, имеющую смысл S, а Y - как уровень реакции человека, имеющий смысл K, то m, r и c можно рассматривать как величины, аналогичные таким характеристикам P личности человека, как ригидность, фрустрированность и агрессивность. Действительно, ригидность - это свойство, характеризующее психологическую инерционность, негибкость; фрустрированность - состояние, возникающее, когда на пути к достижению цели встречаются непреодолимые препятствия, и проявляющееся в отчаянии, депрессии, отказе от активной деятельности и пр.; агрессивность - повышенная склонность к противодействию, отторжению, стремление энергично возражать по каждому поводу и т.п. Таким образом, уравнение динамики механической системы описывает процесс, аналогичный психической реакции человека, и из него, вероятно, можно получить динамическую модель реакции, являющуюся реализацией функции K.

Воспользуемся для получения модели теорией размерностей. Интерпретируем массу m в уравнении динамики механической системы, измеряемую в кг, как ригидность R, измеряемую в некоторых условных баллах, и представим перемещение Y, измеряемое, допустим, в метрах, как уровень реакции, измеряемый в условных единицах, которые, например, в честь Г. Айзенка, назовем гай. Тогда первый и остальные члены уравнения динамики механической системы приобретут размерность балл × гай /сек2 (назовем ее в честь Р.Кеттела кет), что является интерпретацией размерности механической силы, выраженной в ньютонах ( 1 н = 1 кг× м /сек2 ), и имеет смысл размерности X как силы информационного воздействия. Величина r при этом получит размерность балл × сек взамен н × сек/м или кг/сек, а величина с - размерность балл/сек2 взамен н/м или кг/сек2.

Используем далее результаты интерпретации, полагая, что наличие сек в размерности обусловлено существованием некоторого временного параметра Q, и составим на основе уравнения механической системы «черновую» модель психической реакции

где A - агрессивность человека, выраженная в баллах, а Z - пока неизвестный коэффициент, зависящий от фрустрированности F . Если теперь в этой «черновой» модели определить Z, то получим «чистовую», окончательную модель, которая нас интересует.

Коэффициент при Y не зависит ни от R, ни от F, а потому определен непосредственно из размерности ( балл/сек2). Что касается коэффициента Z , то таким же образом его определить нельзя. Причина в том, что психологическая реакция - процесс колебательный. Это известно из инженерной психологии [2], в которой человек исследуется как звено системы управления. В теории управления [1] колебательное звено обычно описывается уравнением динамики

T2 ,

где T - постоянная времени, ξ - коэффициент затухания колебаний, k - коэффициент усиления. И поскольку T входит в коэфффициенты при первом и втором членах уравнения, величина Z непосредственно через размерность не определяется. Чтобы ее найти, разделим обе части уравнения на k

и сопоставим полученное с "черновой" моделью. Из сопоставления становится ясно, что T2 / k эквивалентно R , 1 / k эквивалентно A/Q2 , а Z эквивалентно 2 ξ T/ k.

Вычислив T/ k через R и A/Q2 , получим

 .

Выражая F подобно R и A в баллах, коэффициент затухания, исходя из его физического смысла, можно представлять как

,

где F0 - некоторое значение уровня фрустрированности, считающееся нормальным или пороговым ( при определении фрустрированности, например, по методике, описанной в [6], F0 = 10). Подставив последнее выражение для коэффициента ξ в формулу для Z, а затем Z в «черновую» модель, получим «чистовую» модель

 .

Это и есть искомая модель в окончательном виде. Исследуем её методами теории автоматического управления [4], для чего представим её в операторной форме и запишем характеристическое уравнение отображаемого ею процесса в виде

.

Решая это уравнение, найдем его корни

.

Исследуем их, полагая, что F - величина однонаправленная (F ≥ 0), а R и A - двунаправленные (ригидности соответствует её альтернатива пластичность, а агрессивности - терпимость), что предопределяет возможность R>0, R<0 и A>0, A<0.

В общем случае корни характеристического уравнения - комплексные числа, содержащие действительную и мнимую части. Известно [4], что если действительные части этих чисел отрицательные, то процесс устойчив. Если среди них есть хотя бы одна положительная - то неустойчив. Если они равны нулю, то процесс находится на грани устойчивости. Подставляя в связи с этим в формулу для корней положительные и отрицательные R, отвечающие соответственно ригидности и пластичности, и положительные и отрицательные А, отвечающие соответственно агрессивности и терпимости, а также различные значения F, получим результаты, приведенные в таблице.

Таблица 1. Влияние параметров модели на характер психической реакции

A

R

F

Вид корней характеристического уравнения в аналитической форме

Расположение корней на комплексной плоскости*)

Вид процесса

(психической реакции)

>0

>0

<F0

устойчивый колебательный

>0

>0

>F0

устойчивый апериодический

 

<0

>0

<F0

неустойчивый

<0

>0

>F0

на грани устойчивости

 

>0

<0

<F0

неустойчивый

 

>0

<0

>F0

на грани устойчивости

 

Продолжение таблицы 1. Влияние параметров модели на характер психической реакции

A

R

F

Вид корней характеристи-ческого уравнения в аналитической форме

Расположение корней на комплексной плоскости*)

Вид процесса

(психической реакции)

<0

<0

<F0

неустойчивый

 

<0

<0

>F0

неустойчивый

 

>0

>0

=0

на грани устойчивости

 

<0

<0

=0

на грани устойчивости

=0

≠ 0

≥ 0

неустойчивый

 

≠ 0

=0

>0

корней нет

-

повторяет внешнее воздействие

*) α - ось действительных чисел, jβ - ось мнимых чисел.

Из таблицы видно, что устойчивая психическая реакция свойственна лишь людям, обладающим определенными ригидностью и агрессивностью и некоторой фрустрированностью. Людям, обладающим пластичностью и терпимостью, а также нулевой фрустрированностью свойственна неустойчивая реакция, либо реакция, находящаяся на грани устойчивости. Это вполне объяснимо: люди «пластичные» обладают повышенной «податливостью» влияниям внешних воздействий, а люди с высоким уровнем терпимости не способны отторгать негативные воздействия на них. Те и другие и «откликаются» на указанные воздействия активными внутренними переживаниями, а иногда и стрессами. Интересно отметить, что агрессивность и ригидность существенно влияют на продолжительность реакции. Чем больше ригидность и меньше агрессивность, тем дольше длится реакция. Рост фрустрированности приводит к сокращению длительности реакции и к некоторому сглаживанию её, уменьшению максимумов при колебаниях.

Предложенная модель и результаты её исследования, несомненно, могут вызвать возражения. Главное из них очевидно: психологический портрет личности не ограничивается описанием ригидности, фрустрированности и агрессивности, а потому реакция на информационное воздействие будет зависеть не только от них. Не отрицая этого полностью, с этим, все же, можно поспорить, поскольку общепризнанно, что перечисленные характеристики личности - основные. Подавляющее же большинство остальных характеристик так или иначе можно выразить через них. Так, например, тревожность, в зависимости от того, насколько человек невротичен, в какой степени он экстраверт или интроверт, может быть характеристикой либо вообще несущественной, либо «генерирующей» определенные ригидность и агрессивность [5]. Возможны и иные возражения, однако в ответ на них следует отметить, что авторы работы не претендуют на ее исключительность, отвергающую другие подходы к изучению психической реакции. Описанное - лишь метод и данные, дополняющие уже известное.

СПИСОК ЛИТЕРАТУРЫ

  1. Голубничий Н., Зайцев Г., Иващенко М., Чинаев П. Беседы по автоматике. Киев: Техника, 1971, 232 с.
  2. Котик М. Курс инженерной психологии. Таллин: Валгус, 1978, 364с.
  3. Куффиньяль Л. Кибернетика - искусство управления //Кибернетика ожидаемая и кибернетика неожиданная. М.: Наука, 1968. С. 122-142.
  4. Лотош М. Теория автоматического управления. М.: Наука, 1979, 256 с.
  5. Хьелл Л., Зиглер Д. Теории личности. СПб.: Питер, 1997, 608 с.
  6. Шпалинский В., Морозов Л. Введение в современную теорию личности и коллектива. Харьков: Гуманитарная академия, 1995, 134 с.



Отзывы (через Facebook):

Оставить отзыв с помощью аккаунта FaceBook:

ДАШКЕВИЧ ЮРИЙ МИХАЙЛОВИЧ

Статья в формате PDF 64 KB...

11 05 2021 23:32:58

Организация системы адаптации человека в онтогенезе

Статья в формате PDF 104 KB...

10 05 2021 21:18:28

СИСТЕМА ЦЕННОСТЕЙ СОВРЕМЕННОГО УЧИТЕЛЯ

Статья в формате PDF 182 KB...

08 05 2021 5:25:42

ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ – ОСНОВА ПРОГРЕССА 21 ВЕКА

Статья в формате PDF 120 KB...

30 04 2021 17:23:17

ОТ РЕВОЛЮЦИЙ К ЗДОРОВОМУ СНОБИЗМУ

Статья в формате PDF 135 KB...

16 04 2021 1:38:10

ВТОРИЧНЫЕ ПЕЧЕНОЧНЫЕ ПОРФИРИИ У БОЛЬНЫХ С НАСЛЕДСТВЕННЫМ HLA-АССОЦИИРОВАННЫМ ГЕМОХРОМАТОЗОМ

Проведено исследование ведущих показателей метаболизма порфиринов и железа в сопоставлении с функциональным состоянием печени у 100 больных с гемохроматозом ( Г Х), в динамике. Дана объективная оценка их роли в своевременной и правильной постановке вторичной печеночной порфирии на ранних этапах развития патологического процесса. Порфириновый обмен при наследственном гемохроматозе ( Н Г Х) характеризуется глубоко нарушенными и нестабильными показателями, затрагивающими все этапы синтеза гема гемоглобина (Hb). У больных с Н Г Х и с сопутствующими поздней кожной порфирией ( П К П) и инфекционными вирусными гепатитами В и С, независимо от типа мутации гена HFE ( С289Y или H63D) изменения в обмене железа коррелируют с нарушенным синтезом аминолевулиновой кислоты ( А Л К) и порфобилиногена ( П Б Г). У больных диагностическую ценность в определении функционального состояния печени наряду с трансаминазами представляет исследование экскреции копропорфирина ( К П) с мочой. Выявленные изменения в порфириновом обмене при гомозиготной форме Н Г Х носят постоянный, часто необратимый характер, ухудшая прогноз заболевания. ...

09 04 2021 0:55:47

БИОСФЕРА, БИОРИТМЫ, ЗДОРОВЬЕ

Статья в формате PDF 112 KB...

04 04 2021 0:49:49

УНИВЕРСАЛЬНЫЙ ХАРАКТЕР РЕКУРРЕНТНЫХ ЗАВИСИМОСТЕЙ ФИЗИКО-ХИМИЧЕСКИХ СВОЙСТВ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

Уникальные возможности линейных рекуррентных уравнений первого порядка А(n+1) = aA(n) + b позволяют характеризовать закономерности изменения различных свойств органических соединений ( А) не только в пределах локальных групп гомологов, но и одновременно всех рядов с одинаковыми гомологическими разностями. Более того, рекуррентные соотношения применимы к функциям не только целочисленных (число атомов углерода в молекуле), но и равноотстоящих значений аргументов A(x+Δx) = aA(x) + b, (Δx = const). Этот способ аппроксимации проиллюстрирован на примерах температурных зависимостей растворимости различных веществ в воде и даже времен релаксации в высокочастотных полях. ...

26 03 2021 20:23:45

ОСТРЫЕ ОТРАВЛЕНИЯ ХИМИЧЕСКОЙ ЭТИОЛОГИИ В Г. РЯЗАНИ

Статья в формате PDF 269 KB...

23 03 2021 10:24:29

ТЕРМОДИНАМИЧЕСКИЕ МЕХАНИЗМЫ ПРОТЕКЦИИ МОЗГА ОТ ЗЛОКАЧЕСТВЕННЫХ ОПУХОЛЕЙ ИМПУЛЬСНО-ГИПОКСИЧЕСКИМИ АДАПТАЦИЯМИ

Установлен факт защитного влияния нового бионического режима импульсно-гипоксических адаптаций на восстановительные процессы коры мозга после удаления внутричерепных опухолей у нейрохирургических больных. Механизмом протекции мозга от рецидива злокачественных опухолей может быть согласование ритмов энергопродукции и энергопотребления в процессе формирования адаптации. ...

19 03 2021 0:55:27

КОРЯК ЮРИЙ АНДРЕЕВИЧ

Статья в формате PDF 358 KB...

16 03 2021 10:54:50

ПРИДНЯ МИХАИЛ ВАСИЛЬЕВИЧ

Статья в формате PDF 168 KB...

12 03 2021 22:33:53

ОБРАЗЫ КУЛЬТУРНЫХ ЛАНДШАФТОВ В ТУРИЗМЕ

Статья в формате PDF 109 KB...

11 03 2021 2:32:28

СИСТЕМНАЯ МЕДИЦИНА В САНАТОРНО-КУРОРТНОЙ ПРАКТИКЕ

Статья в формате PDF 144 KB...

08 03 2021 11:40:15

ОПЫТ СЛОВАЦКИХ КОЛЛЕГ

Статья в формате PDF 112 KB...

03 03 2021 2:36:17

УНИВЕРСАЛЬНЫЙ БЛОК УПРАВЛЕНИЯ ЭНЕРГОНАГРУЗКАМИ

Статья в формате PDF 122 KB...

02 03 2021 8:26:55

ЭКОНОМЕТРИЧЕСКОЕ МОДЕЛИРОВАНИЕ

Статья в формате PDF 345 KB...

24 02 2021 11:37:33

ИТЕРАЦИОННЫЙ МОДУЛЯРНЫЙ ДИЗАЙН ДВУМЕРНЫХ НАНОСТРУКТУР

В данной работе предложена эволюционная модель формирования двумерных структур. Определены алгоритмы формирования структур в априори структурированном двумерном пространстве путем заполнения его в соответствии с определенными эволюционными правилами. ...

23 02 2021 7:49:24

Проблема перевода слов – реалий

Статья в формате PDF 327 KB...

22 02 2021 16:18:38

БИОФИЗИЧЕСКИЙ ПОДХОД К ИССЛЕДОВАНИЮ БИОНООСФЕРЫ

Статья в формате PDF 164 KB...

21 02 2021 23:26:57

ПРАКТИКУМ ПО ТАКСАЦИИ

Статья в формате PDF 125 KB...

13 02 2021 21:19:24

ФИТОСАНИТАРНОЕ ОЗДОРОВЛЕНИЕ ЗЕРНОВЫХ И ОВОЩНЫХ КУЛЬТУР С ПОМОЩЬЮ ЭЛЕКТРОХИМИЧЕСКИ АКТИВИРОВАННОЙ ВОДЫ

Показана возможность использования электрохимически активированной воды (в виде анолита и католита) для повышения урожайности зерновых и овощных (картофеля) культур и улучшения фитосанитарной ситуации с помощью модуля активации оросительной воды. Наиболее энтомоцидным действием в отношении пшеничного трипса обладал анолит с окислительно-восстановительным потенциалом +600 и +900 м В. Католит с О В П – 700 м В способствовал увеличению всхожести до 96%. Хороший результат в борьбе против колорадского жука давала предпосевная обработка клубней картофеля вначале анолитом, а потом католитом. Заселенность кустов колорадским жуком и проволочником снизилась на 37–83%. Наиболее эффективно в плане оптимизации фитосанитарного состояния посевов сочетание предпосевной обработки семян с последующим опрыскиванием стеблестоя католитом или анолитом. ...

12 02 2021 13:45:44

КОНЦЕПТУАЛЬНЫЕ ИДЕИ ВОСПИТАНИЯ И ПОДГОТОВКИ КОНКУРЕНТОСПОСОБНЫХ СПЕЦИАЛИСТОВ

Исторический аспект развития студенческого самоуправления в дореволюционный, советский и переходный периоды России показали, что будущее страны на современном этапе определяется тем, каким образом будут осуществлены воспитание и подготовка квалифицированной рабочей силы, готовой к постоянному профессиональному росту, социальной и профессиональной мобильности. Одним из важных стимулов повышения гражданской, патриотической и социальной активности будущих специалистов являются восстановление, наличие и дальнейшее развитие и совершенствование таких демократических институтов в студенческой среде как соуправление и самоуправление. ...

10 02 2021 3:20:13

АТОМНАЯ ЭНЕРГЕТИКА В РОССИИ СЕГОДНЯ

Статья в формате PDF 87 KB...

07 02 2021 18:46:33

МОДЕЛИРОВАНИЕ ПРОЦЕССА СТРУЙНОЙ АЭРАЦИИ ЖИДКОСТИ

Статья в формате PDF 115 KB...

01 02 2021 7:25:16

ХОЛОДОВАЯ АДАПТАЦИЯ И АДРЕНОРЕЦЕПТОРЫ

Получено, что на 30‒й день холодовой адаптации на низкие дозы норадреналина реактивность системного давления больше контроля, а на большие дозы меньше контроля. Реактивность артерий конечности была на все дозы норадреналина меньше контроля. Нами впервые показано, что прессорное действие норадреналина на периферические артерии уменьшается на все дозы после адаптации к холоду, что способствует большему кровотоку и усилению прогрева тканей. Из данной работы следует, что дозированное действие холодного климата может способствовать уменьшению спазма артерий на норадреналин и поэтому, дозированный холод может помогать в лечении гипертонической болезни. ...

24 01 2021 17:27:50

ДЕРМАЛЬНЫЕ ФИБРОБЛАСТЫ И СТАРЕНИЕ КОЖИ ЧЕЛОВЕКА

Статья в формате PDF 145 KB...

23 01 2021 3:36:51

РОЛЬ ОКИСЛИТЕЛЬНОГО СТРЕССА В ПАТОГЕНЕЗЕ ХРОНИЧЕСКОЙ ОБСТРУКТИВНОЙ БОЛЕЗНИ ЛЕГКИХ

В миниобзоре приведены современные тренды изучения роли окислительного стресса в патогенезе хронической обструктивной болезни легких ( Х О Б Л). Показано, что развитие окислительного стресса происходит синхронно с дисбалансом в системе протеазы/антипротеазы и взаимосвязано с нарушением обмена железа. Приведены данные, демонстрирующие нарушение регуляции антиоксидантной защиты при Х О Б Л. Показана взаимосвязь между развитием окислительного стресса и воспалением. Обсуждается гипотеза о взаимосвязи окислительного стресса, хронического воспаления и старения в механизме патогенеза Х О Б Л. ...

09 01 2021 10:55:48

ШИГАРЕВ ВЕНИАМИН МАКСИМОВИЧ

Статья в формате PDF 68 KB...

05 01 2021 14:23:40

ФОРМИРОВАНИЕ СИСТЕМЫ МЕНЕДЖМЕНТА КАЧЕСТВА В ВУЗЕ

Статья в формате PDF 146 KB...

04 01 2021 5:31:36

О НЕКОТОРЫХ АКТУАЛЬНЫХ ПРОБЛЕМАХ В ОБУЧЕНИИ ФИЗИКЕ

Статья в формате PDF 112 KB...

01 01 2021 12:59:10

РОЛЬ АУДИТОРИИ В УЧЕБНОМ ПРОЦЕССЕ

Статья в формате PDF 108 KB...

23 12 2020 14:44:42

ИЛЬМУШКИН ГРИГОРИЙ МАКСИМОВИЧ

Статья в формате PDF 102 KB...

22 12 2020 0:32:48

ГОРНЫЕ ПОРОДЫ: АЛГОРИТМЫ ОПРЕДЕЛЕНИЯ

Статья в формате PDF 157 KB...

20 12 2020 12:16:47

Еще:
Обзоры -1 :: Обзоры -2 :: Обзоры -3 :: Обзоры -4 :: Обзоры -5 :: Обзоры -6 :: Обзоры -7 :: Обзоры -8 :: Обзоры -9 :: Обзоры -10 :: Обзоры -11 ::

Последовательность подготовки научной работы может быть такой:

Выбор темы. Это важный этап. Во-первых, тема должна быть интересна не только вам, но и большинству слушателей, которым вы будете её докладывать, чтобы вы видели заинтересованность в их глазах, а не откровенную скуку.

Выбор целей и задач своей научной работы. То есть, нужно сузить тему. Например, тема: «Грудное вскармливание», сужение темы: «Грудное вскармливание среди студенток нашего ВУЗа». И если общая тема мало кому интересна, то суженная до рамок собственного института или университета, она становится интересной практически для всех слушателей. Целью может стать: «Содействие оптимальным условиям вскармливания грудью детей студентов нашего ВУЗа», а задачей — доказать, что специальные условия, созданные для кормящих студенток, не помешают их успеваемости, но уменьшат количество пропусков, академических отпусков и способствуют выращиванию здоровых детей — нашего будущего. Понятно, что эта тема подходит для студентов медицинских и педагогических ВУЗов, но и в других учебных учреждениях можно найти темы, интересные всем.

Разработать методы исследования и сбора информации. В случае с естественным вскармливанием, скорее всего, это будет анкетирование студенток, имеющих детей.

Систематизировать материал и подготовить презентацию.

Подготовиться к выступлению.

Выступить и получить: награду, удовольствие и опыт, чтобы в следующем году выступить ещё лучше и сорвать шквал аплодисментов, стать узнаваемым, а значит — более конкурентоспособным!