IT-Reviews    

КОНВЕКЦИЯ СМЕСЕЙ В МАГНИТНОМ ПОЛЕ

c78089d0 Источник:
Тактаров Н.Г. Получены уравнения конвекции и конвективной диффузии двухкомпонентных смесей в магнитном поле. Исследованы различные частные случаи. Решена задача о конвективном движении смеси вблизи вертикальной пластины, на поверхности которой происходит гетерогенная химическая реакция. Библиогр. 4 назв. Статья в формате PDF 135 KB

1. Вывод уравнений конвекции намагничивающихся смесей. Уравнения движения двух компонентных неэлектропроводных смесей в магнитном поле имеют вид [2,3]:

 

Здесь v¯ - скорость смеси, ρ - плотность смеси,  c - концентрация   первого  компонента  (c= ρ1ρ2) , Sm -энтропия единицы массы смеси, Т температура, ξ1 и ξ2 - химические потенциалы единицы массы для первого и второго компонентов соответственно,  p давление смеси, η и ζ - коэффициенты вязкости смеси, вектор потока тепла, I¯ - вектор потока диффузии  первого компонента, μ= μ (ρ,c,T,H¯) - магнитная проницаемость смеси, H¯ - магнитное поле, g¯ -ускорение свободного падения. Имея в виду вывод уравнений конвекции, вязкой диссипацией  в уравнении притока тепла пренебрегаем [1]. Давление p в уравнении (1.1) записывается в виде:

где P  -давление в отсутствие магнитного поля при заданных значениях плотности, температуры и концентрации. Выражение для потоков:

Здесь  - кинетические коэффициенты, связанные между собой соотношениями взаимности Онзагера

Запишем тождество Гиббса для намагничивающихся смесей [2]:

Здесь G~m - потенциал Гиббса, приходящий ся на единицу массы среды, ξ=ξ1-ξ2; в качестве независимых термодинамических переменных в тождестве (1.4) выбраны c, p, T, H¯. Выражение для V¯ (с,p,T,H) имеет вид:

Здесь  H = |H¯| ; среда предполагается изотропной.

Далее ограничимся случаем несжимаемой среды, уравнение неразрывности будем писать в  виде div v¯= 0 . Из первой формулы (1.1) следует, что в состоянии равновесия выполняется условие:

Подставляя формулу (1.6) в (1.5) будем иметь:

Аналогично (1.7) записывается уравнение для энтропии

Здесь   - удельная теплоемкость при постоянном давлении, концентрации и магнитном поле.

Будем считать, что отклонения величин от некоторых средних значений малы, поэтому в  формулах (1.7) и (1.8) и далее коэффициенты при   будем считать постоянными величинами, соответствующими некоторым средним значениям концентрации c0 , температуры  T0  и магнитного поля  Выражение для потоков и принимают вид:

В формулах (1.9) вместо кинетических коэффициентов L11 , L12 , L22 введены другие параметры:

коэффициент диффузии:

коэффициент теплопроводности:

термодиффузионное отношение:

а также следующие параметры

μ0 и ρ0 постоянные средние значения магнитной проницаемости и плотности. Все коэффициенты при градиентах в формулах (1.9) предполагаются постоянными.

Подставляя формулы (1.9) в третье и четвертое уравнение системы (1.1), будем иметь:

Здесь  - коэффициент    температуропроводности;

В уравнении притока тепла слагаемое, содержащее   δH2 / δt , надо учитывать в случае переменного магнитного поля, например, в задачах, в которых в качестве модулируемого параметра берется магнитное поле.

Найдем теперь необходимые условия равновесия среды. Взяв rot от обеих частей уравнения (1.6), будет иметь вид:

Из формулы (1.11) следует, что механическое равновесие в среде возможно в случае когда    либо  в  

случае,  когда  векторы  параллельны. Возможны и другие случаи равновесия  когда эти векторы не обязательно вертикальны,но выбраны так, что выполняется условие (1.11).  Далее ограничимся случаем,  когда векторы  вертикальны.

Линеаризуя уравнения (1.1) и (1.10) по малым конвективным возмущениям и предполагая, что  имеем:

Здесь G¯=ΔH градиент магнитного поля, предполагаемый постоянной заданной величиной; c´ ,T´ - отклонения концентрации и температуры от постоянных средних значений c0 и T0 .  

В случае G¯=const из уравнений (1.11), (1.12) следует, что необходимым условием равновесия является постоянство и вертикальность градиентов температуры и концентрации:

Здесь k¯ - единичный вектор, направленный вверх вдоль оси z.

Отметим, что вышеприведенные уравнения при отсутствии  магнитного поля совпадают с уравнениями работы [1]

Магнитное поле в среде можно записать в виде  H¯= H0¯ +H´¯,  где  H0¯ - поле при c0 = const , T0 = const , μ0= const H´¯ - возмущение. Так что G¯=G0¯ + G´¯ , где ; величину G¯ можно считать заданной при выполнении условия G0 >>G´.

2. Уравнения конвективной диффузии. Интерес для приложений представляет случай когда температуру вдоль смеси можно считать постоянной. Конвективная диффузия несжимаемой смеси описывается первым уравнением системы (1.1) и первым уравнением (1.10), а также уравнением неразрывности div v¯ =0 и уравнениями магнитного поля. Для решения конкретных задач необходимо также задавать соответствующие граничные условия на поверхности полости с  жидкостью. Вектор потока диффузии в случае T =const имеет вид:

Далее будем предполагать выполненным условие и пренебрегать в формуле (2.1) слагаемым, связанным с полем тяжести.

Движение смеси при отклонении концентрации от постоянного среднего значения описываются уравнением:

 

В уравнении (2.2) в отличие от уравнения (1.12) учитывается градиент магнитного поля G´¯, индуцированный неоднородностью концентрации.  Вводя  потенциал магнитного поля , из последних двух уравнений (1.1) имеем:

Здесь

Полагая  из формулы (2.3) находим:

Если геометрия задачи такова, что φ´ зависит только от z (z вдоль вектора ), из уравнения (2.4) следует:

Отсюда следует, что влияние градиента концентрации на магнитное поле надо учитывать в случае больших значений B.

Приведем к безразмерному виду стационарное уравнение конвективной диффузии:

 

Введем в рассмотрение  Lc - характерное расстояние, на котором происходит существенное изменение концентрации, LH - характерное расстояние для градиента магнитного поля G, V0 - характерную скорость, G0 - характерный градиент магнитного поля. Обозначая безразмерные величины теми же буквами что и размерные, уравнение (2.5) можно записать в виде:

Здесь  - число   Пекле,

Если  γ << 1 ,  влиянием магнитного поля на диффузию можно пренебречь. При выполнении условия  Pe << 1  надо отбросить левую часть уравнения  (2.6) и  затем приравнять к нулю правую. Распределение концентрации в этом случае определяется уравнением:

Рассмотрим теперь задачу о конвективном движении смеси вблизи полубесконечной вертикальной пластины, на поверхности которой происходит  гетерогенная  изотермическая  реакция. Предполагая  скорость реакции бесконечно большой, запишем граничное условие для концентрации c = 0  на  поверхности пластины (предполагается, что реагирует первая компонента).
Концентрацию вдали от пластины обозначим через c0. Будем считать, что заметное изменение  концентрации происходит в тонком слое вблизи пластины, так что течение имеет вид пограничного слоя. Движение жидкости вдоль пластины происходит под действием поля тяжести и градиента магнитного  поля.  Пренебрегая  индуцированным  градиентом магнитного поля, запишем уравнения движения  в приближении стационарного пограничного слоя [4]:

Здесь z - координата вверх вдоль пластины, x - перпендикулярно к пластине; нижней кромке пластины соответствует  - компонента градиента поля.

Граничные условия:

В работе  [4] показано, что система  (2.7) может быть приведена к обыкновенным дифференциальным уравнениям. Распределение концентрации имеет вид:

Здесь Pr = v/D - число Прандтля,  предполагается что число Прандтля велико [4]. Из формул (2.1) и (2.8) следует, что плотность потока диффузии на пластину равна:

где G0x компонента градиента магнитного поля, n нормаль, направленная внутрь пластины. Таким образом, при помощи магнитного поля можно управлять диффузионными потоками на пластину, на поверхности которой происходит  реакция.

Градиент приложенного магнитного поля предполагается достаточно большим по сравнению с индуцированным градиентом.

Литература

  1. Гершуни Г.З., Жуховицкий Е.М. Конвективная устойчивость несжимаемой жидкости М.: Наука, 1972. 392 с.
  2. Ландау Л.Д., Лифшиц Е.М. Электродинамика сплошных сред. М.: Наука, 1982. 624 с.
  3. Ландау Л.Д., Лифшиц Е.М. Гидродинамика. М.: Наука, 1988. 736 с.
  4. Левич В.Г. Физико-химическая гидродинамика. М.: ГИФМЛ, 1959. 700



Отзывы (через Facebook):

Оставить отзыв с помощью аккаунта FaceBook:

СОРТИМЕНТНО-СТОИМОСТНОЕ РАСПРЕДЕЛЕНИЕ ДЕРЕВЬЕВ НА ПРОБНОЙ ПЛОЩАДИ РАЗНОВОЗРАСТНОГО СОСНЯКА

Способ глазомерного учета выхода сортиментов из деревьев лесного древостоя широко применялся в дореволюционное время под названием коммерческая таксация. Исходя из биотехнического принципа в лесной экономике показана возможность выполнения коммерческой таксации древостоя моделированием стоимостных и возрастных распределений лесных деревьев по текущим рыночным ценам на круглые лесоматериалы. ...

30 11 2020 5:52:26

БИОСФЕРА, БИОРИТМЫ, ЗДОРОВЬЕ

Статья в формате PDF 112 KB...

29 11 2020 17:52:47

ЭЛЕКТРОЭНЕРГЕТИКА

Статья в формате PDF 98 KB...

18 11 2020 1:29:18

Новые виды рыбопродуктов

Статья в формате PDF 115 KB...

14 11 2020 12:16:51

ИЗМЕНЕНИЕ КАПСУЛЫ СЕЛЕЗЕНКИ В УСЛОВИЯХ ХРОНИЧЕСКОЙ АЛКОГОЛЬНОЙ ИНТОКСИКАЦИИ

Статья посвящена актуальной проблеме – влиянию хронической алкогольной интоксикации на изменение структуры капсулы селезенки в раннем постнатальном онтогенезе. Дана сравнительная гистологическая характеристика капсулы с учетом зависимости изменений от различной концентрации потребляемого алкоголя. ...

07 11 2020 20:19:50

АКТУАЛЬНОСТЬ ЭКОЛОГИЧЕСКОГО ОБРАЗОВАНИЯ

Статья в формате PDF 129 KB...

23 10 2020 15:51:24

ФЕНОТИПИЧЕСКАЯ ДИАГНОСТИКА СЕЛЬСКОЙ МЕСТНОСТИ

Статья в формате PDF 321 KB...

16 10 2020 21:43:59

АЛГОРИТМ РАСЧЕТА МОДИФИЦИРОВАННОЙ ГЕРТ-СЕТИ

Статья в формате PDF 130 KB...

14 10 2020 4:14:29

ПРОБЛЕМА ФОРМИРОВАНИЯ КОМПЕТЕНТНОСТЕЙ В УЧЕБНО-ВОСПИТАТЕЛЬНОМ ПРОЦЕССЕ НАЧАЛЬНОЙ ШКОЛЫ

Стратегия социально-экономического развития Р Ф поставило на государственном уровне вопрос о достижении нового качества общего образования – готовности и способности учащихся к непрерывному образованию. В настоящее время в соответствии с основными тенденциями развития современного образования меняются целевые, процессуальные и результативные компоненты учебно-воспитательного процесса и прежде всего в начальной школе. ...

06 10 2020 10:18:12

ПРОБЛЕМЫ ИДЕНТИФИКАЦИИ МОДЕЛЕЙ РАСПРЕДЕЛЕНИЯ СЛУЧАЙНЫХ ВЕЛИЧИН С ПРИМЕНЕНИЕМ СОВРЕМЕННОГО ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ

Рассмотрены некоторые проблемы идентификации моделей распределения данных, при использовании современного математического аппарата для решения этой задачи. Показано, что использование методов нелинейной оптимизации для идентификации моделей приводит к улучшению результатов идентификации, но одновременно, изменяет формальную постановку задачи. Выделено три группы проблем, связанных с выбором критериев согласия, их критических значений и проверкой адекватности получаемых моделей. Проанализированы возможные подходы к решению этих проблем. ...

05 10 2020 13:48:32

СУЩНОСТЬ ОБЩЕНИЯ ЗРИТЕЛЯ С ЖИВОПИСНЫМ ПРОИЗВЕДЕНИЕМ

Статья в формате PDF 115 KB...

30 09 2020 22:59:39

МЯСНАЯ ПРОДУКТИВНОСТЬ БЫЧКОВ ПРИ ВВЕДЕНИИ В РАЦИОН ХИТОЗАНСОДЕРЖАЩИХ ДОБАВОК

Применение хитинсодержащих препаратов оказывает положительное влияние на мясную продуктивность бычков, а превосходство по характеристикам химического состава и энергетической ценности мякоти имеют бычки, получавшие сукцинат хитозана. ...

29 09 2020 21:59:32

ОПЫТ ПРИМЕНЕНИЯ МЕТОДА АГРОСТЕПЕЙ ДЛЯ ВОССТАНОВЛЕНИЯ НАРУШЕННОЙ РАСТИТЕЛЬНОСТИ ДОЛИНЫ СРЕДНЕЙ ЛЕНЫ (ЦЕНТРАЛЬНАЯ ЯКУТИЯ)

Анализ опыта по восстановлению методом агростепей растительности на нарушенных кормовых угодьях долины средней Лены показал, что метод при соблюдении экологических условий и видового состава участков обеспечивает восстановление растительности, проявляющееся в повышении проективного покрытия и доминировании в травостое целинных видов. Соответствие экологических условий и видового состава травостоя при подборе участков обеспечивает восстановление растительности нарушенных участков до 70–75 % и доминирование в травостое целинных видов до 60–65 % в условиях нормального и сильного засоления. ...

26 09 2020 23:57:37

ПСИХОЛОГИЯ И ПЕДАГОГИКА (учебное пособие)

Статья в формате PDF 107 KB...

22 09 2020 12:27:29

ЗЕЛЕНЫЕ ИНДИКАТОРЫ СОСТОЯНИЯ ОКРУЖАЮЩЕЙ СРЕДЫ

Статья в формате PDF 302 KB...

19 09 2020 3:39:34

ИЗУЧЕНИЕ УСЛОВИЙ ПОЛУЧЕНИЯ ФИЦИН-СОДЕРЖАЩЕГО СЫРЬЯ

Статья в формате PDF 124 KB...

16 09 2020 5:15:47

ЛЕЧЕНИЕ БОЛЬНЫХ С ТЯЖЕЛОЙ ТРАВМОЙ

Статья в формате PDF 283 KB...

13 09 2020 19:32:18

ПАНКРЕАТИТ КАК ОСЛОЖНЕНИЕ ПАПИЛЛОТОМИЙ – ПРИЧИНЫ ВОЗНИКНОВЕНИЯ, МЕРЫ ПРОФИЛАКТИКИ

На материале 769 клинических наблюдений проведен анализ причин возникновения острого панкреатита после эндоскопической папиллотомии. Установлено, что основой их развития является прямое повреждение главного протока поджелудочной железы. Разработаны способы профилактики постманипуляционных панкреатитов. ...

11 09 2020 1:35:20

ЭХОГРАФИЧЕСКИЕ МАРКЕРЫ ВНУТРИУТРОБНОЙ ИНФЕКЦИИ

Одной из важнейших проблем современной перинатологии является прогрессирующий рост инфекционной патологии у плода и новорожденного. Целью данной работы являлась комплексная ультразвуковая оценка фето-плацентарной системы у беременных с высоким инфекционным индексом для прогнозирования степени тяжести внутриутробного инфицирования у новорожденного. Обследовано 123 беременных в сроке гестации 30-36 недель. В зависимости от тяжести состояния все новорожденные ретроспективно были разделены на 4 группы. В контрольную (1 группа) вошли новорожденные от матерей с неосложненной беременностью, состояние ребенка при рождении удовлетворительное. В основную (1 – 4 группы) вошли новорожденные от матерей с высоким инфекционным индексом, с локальными или генерализованными проявлениями внутриутробной инфекции. В результате проведенного исследования выявлены эхографические маркеры амнионита, плацентита и собственно инфекционного поражения плода, которое наиболее значимо для прогнозирования рождения ребенка с В У И. Патологические показатели биофизической активности, допплерометрия отражают системные нарушения в состоянии плода, его дисстресс. Таким образом, чем больше эхографических маркеров внутриутробного инфицирования встречается у плода, тем более вероятно рождение ребенка с признаками В У И. ...

03 09 2020 3:31:21

МОДУЛЬНЫЕ ТЕХНОЛОГИИ РЕАЛИЗАЦИИ УЧЕБНОГО ПРОЦЕССА

Статья в формате PDF 169 KB...

02 09 2020 4:11:46

Максимальная скорость окисления оксида азота

Статья в формате PDF 344 KB...

01 09 2020 14:38:26

СОВРЕМЕННЫЕ ТЕНДЕНЦИИ В БАНКОВСКОМ ДЕЛЕ

Статья в формате PDF 256 KB...

30 08 2020 20:23:13

ЯКУТСКАЯ ПОРОДА ЛОШАДЕЙ В ДРУГИХ РЕГИОНАХ РОССИИ

Статья в формате PDF 276 KB...

27 08 2020 11:53:10

ФУНКЦИЯ СОСТОЯНИЯ В КЛАССИЧЕСКОЙ МЕХАНИКЕ И ТЕОРИИ ПОЛЯ

В работе показано, что фундаментальные принципы классической механики и теории поля - принцип наименьшего действия и калибровочная инвариантность полей  и  электромагнитного поля - есть прямое следствие существования уже в рамках классической физики функции состояния. ...

24 08 2020 3:45:40

ПРОБЛЕМЫ МЕНЕДЖМЕНТА РЕКРЕАЦИОННЫХ ЗОН

Статья в формате PDF 151 KB...

23 08 2020 20:55:56

ВЛИЯНИЕ РАЗЛИЧНЫХ ФАКТОРОВ НА ДЛИНУ ШИШКИ УРАЛЬСКОЙ ЕЛИ

Применен метод дисперсионного анализа для изучения силы влияния различных комплексных природных факторов на изменчивость длины шишки ели сибирской, произрастающей в Уральской лесорастительной провинции. Показано, что наибольшее влияние на изменчивость длины шишки в этом районе имеют индивидуальные особенности деревьев, долгота местности и высота над уровнем моря. ...

08 08 2020 8:49:12

КЛЕТКИ СТЕКЛОВИДНОГО ТЕЛА ГЛАЗА ЧЕЛОВЕКА

Статья в формате PDF 140 KB...

04 08 2020 14:23:31

ПЕРСОНАЛ БАНКА КАК ВАЖНЕЙШИЙ ЕГО КАПИТАЛ

Статья в формате PDF 118 KB...

31 07 2020 0:36:50

ЩИТОВИДНАЯ ЖЕЛЕЗА: ПОКАЗАТЕЛЬ ПЛОЩАДИ КОНТАКТА ЭПИТЕЛИЙ-СТРОМА

Разработан новый морфометрический показатель площади контакта эпителия и стромы. Показатель использовался автором при многолетних исследованиях морфофункционального состояния щитовидной железы у женщин и в эксперименте. ...

22 07 2020 21:24:22

Качество жизни детей, больных вирусными гепатитами

Статья в формате PDF 136 KB...

19 07 2020 8:54:35

Развитие стекловидного тела глаза человека

Статья в формате PDF 111 KB...

15 07 2020 17:42:46

ГЕОЭКОЛОГИЧЕСКИЕ ПРОБЛЕМЫ СОВРЕМЕННОЙ РАКЕТНО-КОСМИЧЕСКОЙ ДЕЯТЕЛЬНОСТИ

К настоящему времени геофизика накопила о магнетизме Земли огромную информацию, большая часть которой получена в новейший период исследований космического пространства путём непосредственных инструментальных исследований с помощью космических летательных аппаратов, но построить на традиционных теоретических основаниях общепризнанную теорию о происхождении магнетизма Земли пока не удавалось никому [1]. Учитывая продуктивность магнитодинамического взгляда ряда фундаментальных проблем физики и многочисленных технических задач [2], можно надеяться на аналогичную продуктивность при рассмотрении некоторых из многочисленных аспектов фундаментальной проблемы стационарного геомагнетизма, среди которых первичной представляется его происхождение. ...

14 07 2020 23:45:55

ПОЛИАРИЛАТЫ С ПОВЫШЕННОЙ ХИМИЧЕСКОЙ УСТОЙЧИВОСТЬЮ

Статья в формате PDF 109 KB...

08 07 2020 23:16:32

Еще:
Обзоры -1 :: Обзоры -2 :: Обзоры -3 :: Обзоры -4 :: Обзоры -5 :: Обзоры -6 :: Обзоры -7 :: Обзоры -8 :: Обзоры -9 :: Обзоры -10 :: Обзоры -11 ::

Последовательность подготовки научной работы может быть такой:

Выбор темы. Это важный этап. Во-первых, тема должна быть интересна не только вам, но и большинству слушателей, которым вы будете её докладывать, чтобы вы видели заинтересованность в их глазах, а не откровенную скуку.

Выбор целей и задач своей научной работы. То есть, нужно сузить тему. Например, тема: «Грудное вскармливание», сужение темы: «Грудное вскармливание среди студенток нашего ВУЗа». И если общая тема мало кому интересна, то суженная до рамок собственного института или университета, она становится интересной практически для всех слушателей. Целью может стать: «Содействие оптимальным условиям вскармливания грудью детей студентов нашего ВУЗа», а задачей — доказать, что специальные условия, созданные для кормящих студенток, не помешают их успеваемости, но уменьшат количество пропусков, академических отпусков и способствуют выращиванию здоровых детей — нашего будущего. Понятно, что эта тема подходит для студентов медицинских и педагогических ВУЗов, но и в других учебных учреждениях можно найти темы, интересные всем.

Разработать методы исследования и сбора информации. В случае с естественным вскармливанием, скорее всего, это будет анкетирование студенток, имеющих детей.

Систематизировать материал и подготовить презентацию.

Подготовиться к выступлению.

Выступить и получить: награду, удовольствие и опыт, чтобы в следующем году выступить ещё лучше и сорвать шквал аплодисментов, стать узнаваемым, а значит — более конкурентоспособным!