IT-Reviews    

УРАВНЕНИЯ ДЛЯ КООРДИНАЦИОННОГО ЧИСЛА В НЕУПОРЯДОЧЕНЫХ СИСТЕМАХ

Рекомендуем: фильм Запрещенный прием (Россия) - пересказ сюжета, спойлеры
Источник:
Хархардин А.Н. Топчиев А.И. Приводится вывод уравнений для расчета координационного числа в неупорядоченных конденсированных системах: в зернистых материалах, в композитах с твердой монодисперсной фазой, в жидких металлах и при критическом состоянии вещества. В выводах этих уравнений используется основной их топологический параметр – средняя плотность упаковки структурных элементов дискретности. Знание координационного числа элементов дискретности неупорядоченных систем необходимо для определения многих их свойств: физических, механических, реологических и др., совокупность которых вытекает из их топологических состояний: твердого, псевдотвердого, жидкого, псевдожидкого и критического. Статья в формате PDF 161 KB Геометрия ближайшего окружения частиц зернистых (дисперсных) материалов и плотность их упаковки определяют топологию неупорядоченных систем. В композиционных материалах в результате действия сил поверхностного натяжения между жидкой и твердой дисперсной фазой плотность упаковки ее частиц становится больше, чем в сухом дисперсном слое. Изменение плотности упаковки атомов при плавлении кристаллических веществ, например, металлов зависит кроме всего прочего от коэффициента компактности их кристаллической решетки. Если он меньше, чем плотность случайной (произвольной) упаковки невзаимодействующих твердых шаров (η=0,6403), то плотность упаковки атомов в жидкой фазе возрастает. Если он больше этой величины, как для большинства металлов, то плотность упаковки атомов, например, в жидких металлах зависит от температуры, межатомного взаимодействия, наличия жидкого полиморфизма или способности их к кластерообразованию. Число ближайшего окружения частицы в дискретной системе называется координационным числом. Структурная топология определяет координацию этих частиц в трехмерном пространстве координационным числом и плотностью их упаковки в системе. Структурная топология неупорядоченных систем - это наука о составе, уровнях организации структур топологического беспорядка и свойствах систем, наделенных дискретностью. Дискретность неупорядоченных систем может проявляться как на микроуровне в виде атомов, молекул и их ассоциаций, флуктуаций плотности, кластеров, магнитных доменов и пр., так и на макроуровне в виде флокул, агрегаций, блоков, высокоплотных образований и пр. Так, при измельчении зернистого материала возрастает электростатическое взаимодействие частиц, изменяется структура дисперсного слоя в результате уменьшения плотности их упаковки и координационного числа, вплоть до критического состояния, когда наступает сухое агрегирование микрочастиц. При дальнейшем их измельчении проявляются аномальные физические - структурные, магнитные и электрические свойства. Введение большого количества таких наполнителей в композиты и их переработка в изделия затрудняется. Следовательно, на этой стадии измельчения изменяется уровень организации структуры как твердой дисперсной фазы в слое, так и в наполненных композитах. Знание координационного числа в зернистом слое, твердой дисперсной фазы в композитах, в жидкостях требуется в теории композиционных материалов с электропроводящим дисперсным наполнителем, в теории жидкости и в практике металлургических процессов для расчета вязкости и термодинамических характеристик жидких металлов. Метод определения координационного числа по " радиальной функции распределения плотности" [1] - трудоемкий и показывает наибольшее его значение в первом максимуме этой кривой, который может соответствовать локальным скоплениям атомов, кластерным или плотным жидким полиморфным образованиям.

Наш приближенный метод основан на использовании рекуррентного уравнения для фазовых, топологических переходов вещества, полученного при математическом описании аэро и гидродинамики зернистого слоя в точках псевдоожижения - кипения в зависимости от порозрости неподвижного слоя. Это уравнение имеет вид [2]:

 

где η1,η - плотность упаковки частиц в псевдофазах, в близи (до и после) топологического перехода, К - гидродинамический параметр проницаемости слоя, так называемая "константа" Козени - Кармана:

Покажем, что знаменатель в скобках выражения (1) представляет собой координационное  число для невзаимодействующих частиц со случайной упаковкой в слое. Преобразуем уравнение (1) для точки ФТП типа "жидкость газ", "твердая дисперсная фаза газ", "псевдожидкая  фаза -газ" при критическом состоянии вещества к виду:

V - V1 = V / 3ln(2K)

где V, V1 - объем менее плотной и более плотной фазы в точке ФТП

Подставляя правую часть этого выражения в уравнение Менделеева-Клапейрона-Клаузиуса, получим:

 

где Т, q - температура и скрытая теплота ФТП.

Преобразуем это выражение к виду полагая что для псевдоожиженного слоя невзаимодействующих частиц в точке ФТП (в точке псевдоожижения - кипения слоя) выполняется равенство идеальных газов РV=RT, где параметры Р и V могут быть определены давлением псевдоожижающего агента и объемом псевдоожиженного слоя:

Интегрирование этого выражения в предположении, что скрытая теплота фазотопологического перехода q не зависит от температуры, дает

Преобразуем это выражение к виду

Выражение в скобках левой части этого равенства примем за коэффициент Z для конденсированной фазы (псевдотвердой, жидкой и псевдожидкой), а при критическом состоянии вещества он представляет собой критический коэффициент, равный по величине координационному числу атомов в плотной фазе флуктуаций плотности (в псевдожидкой фазе) ZC = RTC / PCVC.Следовательно коэффициент Z в точке ФТП представляет собой координационное число атомов (частиц) в псевдоконденсированной фазе, где RT≠ РV, тогда как в псевдоожиженной системе невзаимодействующих частиц RT=PV. В результате принятых соображений, получим

ZPVlnP = -3qln(2K)±cRT

либо

ZRTlnP = -3qln(2K)±cRT         (2)

Пологая, что q = ±RTlnP и пренебрегая постоянной интегрирования (с=0) для невзаимодействующих частиц монодисперсного слоя и элементов структуры конденсированной фазы, получим:

Z = 3ln (120,754· з51)              (3)

где  η1 - плотность упаковки элементов структуры в более плотной фазе в точке ФТП.

Из этого уравнения при з1 ≥0,4098 ≥Z 1 , что указывает на невозможность существования в природе жидкой конденсированной фазы с плотностью  упаковки з1 < 0,4098  невзаимодействующих элементов ее структуры со случайной их упаковкой (т.е. с топологическим  беспорядком),  а  при з1  ≥0,38337 ≥Z0  для газовой фазы.  Величина ZСК =120,754з51 представляет собою число элементов (частиц) в скоплении вместе с центральным.  Выражение  (3) можно записать в общем виде с учетом силовой константы их взаимодействия k:

Z = kln (120,754· з51), где k =3...4              (4)

Из этого уравнения для невзаимодействующих (k≤ 3) и взаимодействующих элементов структуры (k ≤4) соответственно в псевдожидкой фазе при з1=0,6403...0,6655 получим Z =7,69...8,27 и Z=10,3...11,0 . Величина η=0,6655 получена из уравнения (1) при η1=0,74048. Полагая, что для критического состояния вещества q=-RCTClnPC/3 из выражения (2) получим:

ZС = kСln (120,754· з5ж),                       (5)

где Ж - плотность упаковки атомов в плотной фазе флуктуаций плотности, которая незначительно отличается от величины ее в жидкой фазе при температуре кипения (плавления) вещества.

Для конденсированной жидкой фазы в точке кипения (плавления) вещества и в критической точке выражение (5) можно записать в общем виде:

где с - константа взаимодействия атомов в жидкой  фазе,  с ≤1.  Так  как  при ηж=0,6403...0,6038...0,5255 и с=1 из выражения (6) Zс=4...3,76...3,0; при с=3 Z=12...11,3...9, а при с=2,549 Zс=10,2...9,6...7,65.

Для уравнения (5) определим изменение величины kс в пределах изменения 3 ≤ Z ≤ 4 . Для этого воспользуемся наименьшем значением координационного числа  ZC =10зC = 2,549 для невзаимодействующих элементов псевдофазы:

Коэффициент kс=1,1769 приведем к кратному значению на одно из десяти возможных чисел в первой, во второй и в последующих сферах ближайшего окружения центральной частицы в трехмерном пространстве с увеличением их числа при разрыхлении структуры:

Из этого выражения при ηж≤0,6403 получим широкий спектр стандартных значений Zс, при четных значениях показателя степени n:Zc=2,65…2,74…2,82…2,92…3,02…3,12…3,22…3,33…3,44…3,55…3,67…3,79…3,92…4,05…4,18…, а при η1≤0,6038 – Zc=2,67…2,76…2,85…2,95…3,04…3,15…3,25…3,36…3,47…3,58…3,70…3,82…3,95…4,08…4,2….

Следовательно с уменьшением плотности упаковки частиц в псевдожидкой фазе коэффициент kс понижается, при этом возрастает число частиц в первой сфере ближайшего окружения. При n=10 эти ряды начинаются величинами Zc=3 и Zc=2,67 соответственно.

Коэффициент kс=1,5692 приведем к кратному значению на одно из двенадцати возможных чисел ближайшего окружения центрального атома в трехмерном пространстве с увеличением их числа при разрыхлении структуры:

где n≥0…12 – ряд чисел ближайшего окружения центрального атома в флуктуациях плотности. Из этого выражения при ηж≤0,6403 получим: Zc=2,663…2,765…2,870…2,980… 3,094…3,213…3,335…3,463…3,596…3,733…3,87 6…4,024, а при ηж=0,6038- Zc=2,36…2,45…2,54…2,64…2,75…2,85…2,95…3,07…3,18…3,30…3,43…3,56…3,70 …3,85…3,99…4,14. При n≥6 эти ряды начинаются величинами Zc=3,2 и Zc=2,85 соответственно, а при n=12 Zc=4 и Zc=3,56. При Z=10, что характерно для большинства жидких металлов, это выражение имеет вид:

Если плотность упаковки атомов определяется в жидкой фазе при температуре кипения (плавления) вещества, то в полученные результаты укладываются все значения Zc реальных газов и жидкостей [4]. Так, из уравнения Ван–дер-Вальса Zc=2,67, а для реальных газов Zс находится в пределах от 3,0 до 3,95, причем оно всегда больше 2,67. Невыполнимость уравнения (8) при подстановке в него hс объясняется тем, что в этом и подобных уравнениях согласно (1) используется плотность упаковки атомов в предшествующей более плотной фазе в точке ФТП. Полагаем, что в критической точке устанавливается состояние структуры вещества с регулярной плотностью упаковки сфер трехмерных колебаний атомов с предисторией ее при твердом полиморфном или кристаллическом состоянии, равной укладке атомов в гексагональной или в гранецентрированной (наиболее вероятных) решетках, где η1=0,74048 и Z=12, в тетрагональной (η1=0,6981; Z=10) или в объемно-центрированной (маловероятной) кристаллической решетке (η1=0,6802; Z=8). Вблизи критической точки развитие сильных флуктуаций плотности происходит по причине смены состояния структуры с регулярной укладкой сфер трехмерных колебаний атомов на случайную упаковку атомов. В прямолинейной зависимости координационного числа сфер трехмерных колебаний атомов от плотности их упаковки η1, коэффициенты при η1 становятся одинаковыми в окрестности критической точки. Следовательно, в критической точке ηс=(0,74048…0,6981)×ηсф, где ηсф – плотность упаковки атомов в сферах трехмерных их колебаний.

Второй подход к расчету координационного числа в сыпучих материалах и в твердой дисперсной фазе композитов основан на соответствии Zс=3…4 – критической плотности упаковки частиц на пороге предельного измельчения ηс≤0,2549. Учитывая непрерывность изменения фазотопологического состояния дисперсного слоя и соответствующее ему изменение плотности упаковки в нем частиц при его измельчении, прямолинейная интерполяция этого соответствия на произвольную величину плотности случайной упаковки невзаимодействующих и взаимодействующих частиц приводит к выражениям вида:

В работах российских и зарубежных исследователей структуры зернистого слоя, монодисперсных твердых шариков в слое отмечается один замечательный результат. Структура случайной упаковки твердых сферических частиц в зернистом слое характеризуется перманентностью локальных фрагментов с различной регулярной укладкой в них небольшого числа партикулярных частиц. Типы способов их укладки хорошо известны в кристаллохимии. При равной вероятности этих способов укладки в зернистом слое и соответствующих им координационных чисел, среднее координационное число в нем будет равно: Z= (12+10+8+8+6)/5 =8,8. Для случайной паковки идентичных частиц прямолинейная зависимость координационного числа в зернистом слое до наибольшей плотности их упаковки η1 =0,640289  при Z=8,8 будет иметь вид:

Среднее значение коэффициентов при η1 в уравнениях (9) и (10) дает аналогичный результат при η1 в уравнении (11). Из уравнения (11) при η1=0,574 и η1=0,59 Z=7,89 и Z=8,11. Экспериментальный результат при этом для частиц гранулированной сажи и стальных шариков соответственно равен: Z=7,87 и Z=8,06 [4].

Из уравнения (10) для случайной упаковки взаимодействующих частиц при η1=0,64029 получим Z=10. Преобразуем уравнение (3) для случайной упаковки частиц с учетом сил трения зацепления и заклинивания между ними в зернистом слое и сил адгезионного взаимодействия и вязкости в наполненных композитах до наибольшего значения Z=10 при η1=0,640289 следующим образом:

Отсюда, при η1=0,640289 с=3,602, а выражение для Z имеет вид:

Последний член в этом уравнении представляет собой зависимость коэффициента внутреннего трения зернистого слоя и композитов от η1: fвт=1,2η1, где с=1,2. Так, при η1=0,60…0,65…0,84 fвт=0,72…0,78… 1,0, что хорошо согласуется данными для кварцевого песка различной дисперсности. Для слабовзаимодействующих частиц со случайной их упаковкой в зернистом слое при η1=0,64029 и Z=8,8, при η1=0,6038 и Z=8 выражения, полученные подобно (12) будут имет вид:

Таким образом, для определения коэффициента внутреннего трения сыпучих материалов по формуле fвт=сη1 необходимо найти свободный член к уравнению (9), т.е. коэффициент «с» при Z=8,8 и η1≥0,6038 – для учета сил трения между частицами, а при η1≤0,6038 и Z=8 – для невзаи модействующих частиц округлой формы, либо коэффициент при η1 в уравнении (12) для данной плотности их упаковки в зернистом слое, а в композиционных материалах при Z=10.

Для всех значений Z≤8…10…12 и η≤0,68017…0,69813…0,74048 выражения для упрощенного расчета координационного числа взаимодействующих элементов структуры ме таллов в твердой и в жидкой фазе неупорядоченных систем получим путем преобразования уравнения (9) следующим образом:

Для исходных данных топологических параметров твердой фазы получим соответственно:

В уравнении (15) при Z=12 и η1=0,74048 выделим одну из величин плотности упаковки атомов в твердых металлах следующим образом:

Полученная при этом величина η1=0,726235 совпадает с плотностью упаковки атомов в гранецентрированной γ - полиморфной твердой модификации железа [5]. Вычисление по рекуррентному уравнению (1) при η1=0,726235 дает величину η=0,4722, совпадающей с ошибочной рекомендацией ее η=0,47±0,02 [6] для плотности упаковки атомов большинства жидких металлов. Из уравнения (15) для металлов при η1=0,73764… 0,72624…0,67468…0,66549…0,6505 получим: Z=11,95…11,76…10,93… 10,78…10,54. Первые две из этих величин относятся к твердой полиморфной фазе в точке ФТП. Следовательно уравнение (15) хорошо описывает многие металлы в полиморфных твердых и жидких модификациях, в тройной точке и в точке плавления с наличием жидкого полиморфизма к более плотным ГЦК и ГПУ структурам и кластерообразованию. Незначительное отличие уравнений (9) и (13) указывает на возможный легкий переход объемно-центрированной компактности сфер трехмерных колебаний атомов к случайной их упаковке, на неустойчивость высокотемпературных полиморфных модификаций с объемно-центрированной структурой в жидких металлах. При дальнейшем нагревании они переходят в случайную упаковку атомов, либо в плотнейшие гексагональную или гранецентрированную жидкую модификацию сфер трехмерных колебаний атомов в решетке с увеличением радиуса взаимодействия между ними. При критическом состоянии вещества объемно-центрированная компактность сфер трехмерных колебаний атомов маловероятна, либо совершенно невозможна.Учитывая, что в уравнении (1) выражение вид ln(120,754η15) дает число невзаимодействующих частиц, атомов или сфер их трехмерных колебаний с высокоплотной случайной упаковкой или с регулярной укладкой в фрагментах или в плотной фазе флуктуаций плотности, выражение для критического коэффициента в критической точке и вблизи нее следует записать в виде:

где с – силовая константа взаимодействия атомов, Z – наиболее вероятное число сфер трехмерных колебаний атомов в критической точке, Z=12…10.

Из уравнения (16) для ряда η1 с учетом полиморфизма: 0,74048; 0,73764; 0,72624; 0,710548; 0,70548; 0,6981; 0,68527; 0,6802 при с=1 и Z=12…10 получим ряд значений для Zс: 3,68…3,04; 3,67…3,06; 3,76…3,13; 3,89…3,24; 3,94…3,28; 4,0…3,34; 4,13…3,44; 4,18…3,49. Для дисперсного слоя частиц при Z=7,54 (9), Z=7,94 (4), Z=8,8 (11) согласно уравнению (16) при h1=0,6403 и с=1 получим: Zс=2,94; 3; 3,43; а при Z=10 (12) Zс=3,9. Как следует из результатов расчета, наиболее вероятное координационное число сфер трехмерных колебаний атомов в критической точке Z=10 с послойной гексагональной укладкой их в центре объема системы. В поле сил гравитации оно изменяется от низа к верху объема системы от Z=12 до Z=8. При этом возможно изменение Zс для слабовзаимодействующих элементов структуры: при Z=12 Zс=4,0, при Z=10 Zc=3,34, а при Z=8 Zc=2,67. Так, если среднее координационное число в неупорядоченной системе Z≤8, то для взаимодействующих элементов согласно (12) Z=10, в том числе и для большинства жидких систем и металлов Z=(12+10+8)/3=10 . Преобразуем уравнение (3) для учета взаимодействия (внутреннего трения) элементов структуры в жидкофазных системах путем приведения его к граничным параметрам кристаллических структур и тем самым найдем постоянную интегрирования в уравнении (2). Для граничных условий η1=0,74048 и =12 получим:

Отсюда, уравнение для возможно полного интервала значений Z с данным типом укладки элементов структуры имеем вид:

Последний член в этом уравнении с предистрией регулярной укладки атомов. Для приведения его к произвольной (случайной) упаковке атомов в жидкой фазе преобразуем его аналогичным (12) образом:

 

При η1≥0,4098 и η1≥0,38337 из этого уравнения получим соответственно Z≥2,18 и Z≥1,1, что указывает на число взаимодействующих атомов в газовой фазе. Аналогично получают уравнение для Z при граничных условиях для тетрагональной укладки при Z=10 и η1≥0,6981, для объемно- центрированной укладки при Z=8 и h ≥0,6802:

В полученных выше уравнениях (8, 8а, 8b) согласно выражениям (12) и (18) следует учитывать второй член, определяющий коэффициент внутреннего трения. Тогда полное выражение для критического коэффициента будет иметь вид:

где с=0,7085; 0,957; 1,2 – коэффициенты, характерные для данного типа структуры неупорядоченных систем (полиморфизма, кластеризации и случайной упаковки взаимодействующих элементов); kc=1,016423 – обобщенный коэффициент этого взаимодействия; kc=1,04609 – коэффициент для сильного взаимодействия, а kc=1,03826 – коэффициент для слабовзаимодействующих элементов неупорядоченных систем.

В уравнении (21) показатель n является неизвестной величиной, а величина knc зависит от индивидуальных свойств вещества, которая подлежит определению. Для известных значений Zc показатель n определяется подбором его значения для точного определения коэффициента внутреннего трения в виде:

fВ=cknc·з1                          (22)

Для большинства сыпучих материалов n=0. Так, при kc=1,016423 и с=0,957 из выражения (21) для неона при n=3 Zc=3,34, для аргона при n=8-8,5 Zc=3,47-3,50; для криптона при n=19-20 Zc=3,48-3,54; для ксенона при n=3 Zc=3,074; при kc=1,04609 и n=1 для неона Zc=3,33 (3,33), при n=3-3,5 для аргона Zc=3,49-3,57 (3,49-3,54), при n=7 для криптона Zc=3,50 (3,50), при n=1 для ксенона Zc=3,06 (3,07). Из выражения (21) при kc=1,01642, с=1,2 и n=0 для неона Zc=3,336 (3,33) и ксенона Zc=3,076 (3,07); для аргона при n=2 и kc=1,04609 Zc=3,50 (3,49), а при kc=1,01642 и n=6 Zc=3,53 (3,54), для криптона при n=6 Zc=3,53 (3,50), а при kc=1,01642 и n=16 Zc=3,50 (3,50). В скобках приведены экспериментальные данные.

Поскольку первые члены в уравнениях (17…20) исходят из случайной упаковки невзаимодействующих твердых сферических частиц, то поправка к ним на взаимодействие атомов в жидкой фазе определяется отношением плотности случайной упаковки твердых сфер, полученной из уравнения (1) для жидкой и псевдофазы из плотности их укладки в данной кристаллической решетке или полиморфной модификации, к фактической плотности упаковки атомов в жидкой фазе вещества - η1ж, а поправка ко вторым членам этих уравнений зависит от η1 и ее отклонения от таковой при случайной упаковке. При плавлении металлов жидкий полиморфизм и топологический беспорядок конкурирует в упаковке атомов в жидкой фазе, что приводит к повышению плотности их упаковки при наличии кластерных образований, либо к снижению ее при случайной их упаковке.

Следовательно, в точке плавления вещества при разрыхлении структуры в жидкой фазе в результате увеличения радиуса межмолекулярного взаимодействия получим:

где с – коэффициенты при η1 в уравнениях (18…20) для исходной данной кристаллической структуры; n – показатель, учитывающий влияние жидкого полиморфизма, кластеризации металлов или случайной упаковки атомов: n=0 – с преимуществом жидкого полиморфизма, n=1 – с преимуществом произвольной упаковки атомов в жидкой фазе при с=1,2, с=0,7085 и кластеризации атомов при с=0,957; значения η1 для данного типа кристаллической структуры или жидкой полиморфной модификации вычисляются из уравнения (1).

Приведем примеры расчета координационного числа в структуре жидких инертных газов и щелочных металлов при температуре плавления с учетом перегрева или переохлаждения.

В скобках приведены экспериментальные данные [1]. Данные для hж взяты из работы [1], а в скобках – справочные данные. Таким образом, жидкофазный полиморфизм металлов кластеризацию или случайную упаковку атомов в жидкой фазе можно обнаружить по равенству координационного числа, получаемого из радиальной функции распределения плотности и соответствующего вида одной из приведенных выше расчетных формул. Полученные уравнения для координационного числа в структуре неупорядоченных систем, наделенных дискретностью, позволяют с достаточной точностью вести расчет его величины для жидких металлов, коэффициента внутреннего трения этих систем и проектирование состава композиционных материалов с заданными свойствами.

Литература

  1. Скрышевский А.Ф. Структурный анализ жидкостей и аморфных тел. - М.: Высшая школа, 1980. - 328 с.
  2. Хархардин А.Н. Структурная топология неупорядоченных систем. // Вестник БелГТАСМ. Научно - теорет. ж - л. 2002. №2. - С.14 - 27.
  3. Беляев Н.М. Термодинамика. - Киев:Выща школа, 1987. - С. 36 - 37.
  4. Аэров М.Э., Тодес О.М. Гидравлические и тепловые основы работы аппаратов со стационарным и кипящим зернистым слоем. - Л.: Химия, 1968. - С. 8 - 52.
  5. Ахметов Н.С. Неорганическая химия.- М.: Высшая школа, 1975 - С. 619.
  6. Харьков Е.И., Лысов В.И., Федоров В.Е. Физика жидких металлов. - Киев. Выща школа,1979. - 247с.



Отзывы (через Facebook):

Оставить отзыв с помощью аккаунта FaceBook:

КОМПЕТЕНТНОСТИ – РЕЗУЛЬТАТИВНО-ЦЕЛЕВАЯ ОСНОВА ОБУЧЕНИЯ БЕЗОПАСНОСТИ ЖИЗНЕДЕЯТЕЛЬНОСТИ В КОНТЕКСТЕ ДЕЯТЕЛЬНОСТНОГО ПОДХОДА

Обобщаются понятия «компетентность». Формулируются компетентности, необходимые для решения проблем безопасности жизнедеятельности в практической работе инженера. Предлагается направление целевого развития компетентностей выпускника технического вуза в процессе его обучения. ...

06 05 2021 17:45:28

КЛИНИКО-ФУНКЦИОНАЛЬНАЯ ХАРАКТЕРИСТИКА МАЛЫХ АНОМАЛИЙ СЕРДЦА У ДЕТЕЙ С АРИТМИЯМИ

На основании результатов комплексного клинико- инструментального обследования 390 детей в возрасте от 5 до 15 лет, проживающих в г. Красноярске, была изучена зависимость клинического течения нарушений сердечного ритма и проводимости от выраженности и формы малых аномалий развития сердца. Установлены основные эхокардиографические параметры и прогностические критерии развития гемодинамических нарушений у детей с аритмиями. ...

01 05 2021 8:59:26

Продажа товаров в кредит

Статья в формате PDF 113 KB...

30 04 2021 1:23:13

ЛЕД И ЛЕДНИКИ

Статья в формате PDF 279 KB...

29 04 2021 13:20:37

НОВОЕ УСТРОЙСТВО ДЛЯ УДАЛЕНИЯ ЗУБНЫХ ОТЛОЖЕНИЙ

Статья в формате PDF 112 KB...

28 04 2021 5:46:46

БАХРУШИН ВЛАДИМИР ЕВГЕНЬЕВИЧ

Статья в формате PDF 114 KB...

27 04 2021 10:12:31

ВЗАИМОДЕЙСТВИЕ 1,3-ДЕГИДРОАДАМАНТАНА С ДИМЕТИЛТРИСУЛЬФИДОМ

В статье рассмотрены реакции 1,3-дегидроадамантана, относящегося к напряженным мостиковым [3.3.1]пропелланам, с диметилтрисульфидом. Установлено, что при взаимодействии образуются 1,3-бис(метилтио)адамантан, 1-(метилдитио)-3-(метилтио)адамантан и 1,3-бис(метилдитио)адамантан в соотношении 1:4,5:1. Структуры полученных соединений подтверждены методами хромато-масс-спектометрии и Я М Р1 Н-спектроскопии. Выход целевого 1-(метилдитио)-3-(метилтио)адамантана составляет 50 %. Было предположено, что реакция протекает по радикальному механизму. Приведено описание эксперимента. ...

24 04 2021 19:59:54

МИКРОЭКОЛОГИЯ ЧЕЛОВЕКА (ЧАСТЬ II)

С экологических позиций излагается представление о человеке как метасистеме, состоящей из макроскопического (тело) и микроскопического (микробиота) компонентов. Последний определяется как биоценоз микроорганизмов — бактерий, простейших, микроскопических грибов и вирусов, встречающийся у здоровых людей. Приводятся некоторые количественные характеристики микробиоты человека: общее число микроорганизмов, суммарная биомасса, процентное содержание облигатной, факультативной и транзиторной составляющих, время, за которое происходит смена генерации микроорганизмов. Рассматриваются главные системоообразующие факторы, обеспечивающие целостность микробиоты: структурный, метаболический, генетический и информационный. Анализируются взаимоотношения микробиоты и макроорганизма в нормальных физиологических условиях и при патологии. Обсуждаются механизмы развития дисбиозов и патогенетически обоснованные подходы к их коррекции. ...

23 04 2021 2:33:19

БИБЛИОМЕТРИЧЕСКИЙ АНАЛИЗ ПРОЕКТОВ В ОБЛАСТИ ЗНАНИЯ «БИОЛОГИЯ И МЕДИЦИНСКАЯ НАУКА», ПОДДЕРЖАННЫХ РОССИЙСКИМ ФОНДОМ ФУНДАМЕНТАЛЬНЫХ ИССЛЕДОВАНИЙ (ИТОГ 15-ти ЛЕТ)

Рассмотрена финансовая поддержка инициативных и издательских проектов в области знания «биология и медицинская наука» Российским Фондом Фундаментальных Исследований. Проанализированы количественные характеристики и динамика результатов конкурсов проектов по разным аспектам нейрофизиологии. ...

21 04 2021 12:54:36

ИММУНИТЕТ И РАЗЛИЧНЫЕ СТАДИИ СТРЕССОРНОГО ВОЗДЕЙСТВИЯ

Изучение иммунитета при стрессе является правомерным в оценке адаптивных систем организма и его резервных возможностей. На основании анализа функциональных возможностей иммунитета можно воздействовать на адаптивные системы и прогнозировать течение стресс-реакции. ...

07 04 2021 22:23:28

КАПСУЛИРОВАНИЕ МНОГОВЫВОДНЫХ BGA МИКРОСХЕМ

Статья в формате PDF 135 KB...

03 04 2021 3:34:36

ГЕННАДИЙ ФЕДОРОВИЧ КИСЕЛЕВ

Статья в формате PDF 205 KB...

02 04 2021 18:15:20

ИСТОРИЯ РАЗВИТИЯ ИСТИННЫХ УЧИТЕЛЕЙ

Статья в формате PDF 104 KB...

31 03 2021 12:28:58

ИСПОЛЬЗОВАНИЕ МЕТОДА ДИАГОНАЛЬНОЙ СЕГМЕНТАРНОЙ АМПЛИТУДОМЕТРИИ ДЛЯ ДИАГНОСТИКИ ФУНКЦИОНАЛЬНОГО СОСТОЯНИЯ СПОРТСМЕНОВ

Методика диагональной сегментарной амплитудометрии, заключающаяся в регистрации амплитуды колебаний активного и реактивного сопротивления тканей человеческого организма, широко используемая в медицинской практике, начинает применяться в спорте для контроля за функциональным состоянием спортсменов в различные периоды учебно-тренировочного процесса. Результаты, полученные данным методом, показывают, что различия в проводимости тканей определяются видом спорта, а также квалификацией спортсменов. Проводимость тканей более устойчива в подготовительный период по сравнению с соревновательным. Суммарная нестабильность проводимости тканей выше на соревнованиях более высокого уровня. ...

29 03 2021 6:43:57

ИКСОДОВЫЕ КЛЕЩИ И ЖИВОТНОВОДСТВО КУЗБАССА

Статья в формате PDF 117 KB...

25 03 2021 12:51:58

ВОДНЫЙ РЕЖИМ РЕК СЕВЕРО-ЗАПАДНОГО КАВКАЗА

Статья в формате PDF 126 KB...

23 03 2021 19:49:48

НЕЙРОГЕННЫЕ МЕХАНИЗМЫ РЕГУЛЯЦИИ МЫШЕЧНОГО ТОНУСА

Статья в формате PDF 300 KB...

22 03 2021 12:59:32

ТРАНСФОРМАЦИЯ НАСЕЛЕНИЯ ОХОТНИЧЬЕ-ПРОМЫСЛОВЫХ МЛЕКОПИТАЮЩИХ ПРИ ОСВОЕНИИ ЧАЯНДИНСКОГО ЛИЦЕНЗИОННОГО УЧАСТКА (ЗАПАДНАЯ ЯКУТИЯ)

В сообщении представлены сведения о трансформации населения охотничье-промысловых млекопитающих при освоении Чаяндинского лицензионного участка ( Западная Якутия). Материалы собраны в 2009–2011 гг. В результате проведенных учетных работ и опросных сведений на территории лицензионного участка выявлено обитание 10 видов охотничье-промысловых млекопитающих из 20 видов, обитающих на территории Западной Якутии. На настоящий момент существенных изменений численности охотничье-промысловых животных на лицензионном участке не происходит. В целом воздействие геологоразведочных работ на нефть и газ носят локальный характер. ...

21 03 2021 11:13:41

Синтопия пищевода у 8-недельного предплода человека

Статья в формате PDF 103 KB...

19 03 2021 1:14:55

МОЛЕКУЛЯРНАЯ ПАТОЛОГИЯ АЛЬДЕГИДНАЯ БОЛЕЗНЬ

Статья в формате PDF 119 KB...

17 03 2021 18:48:20

Гиперболическая модель задачи о фазовом переходе

Статья в формате PDF 117 KB...

16 03 2021 9:18:28

ИСПОЛЬЗОВАНИЕ АЛЬГОЛОГИЧЕСКИХ КРИТЕРИЕВ ПРИ ЭКОЛОГИЧЕСКОМ ПРОГНОЗИРОВАНИИ АНТРОПОГЕННОЙ НАГРУЗКИ НА НАЗЕМНЫЕ ЭКОСИСТЕМЫ

Обсуждаются возможности использования микроскопических почвенных водорослей при оценке качества окружающей среды. Показано, что в качестве критериев при прогнозировании антропогенной нагрузки на наземные экосистемы можно использовать изменение видового состава и численности почвенных водорослей. ...

11 03 2021 4:37:35

КОНЦЕПТУАЛЬНЫЕ ИДЕИ ВОСПИТАНИЯ И ПОДГОТОВКИ КОНКУРЕНТОСПОСОБНЫХ СПЕЦИАЛИСТОВ

Исторический аспект развития студенческого самоуправления в дореволюционный, советский и переходный периоды России показали, что будущее страны на современном этапе определяется тем, каким образом будут осуществлены воспитание и подготовка квалифицированной рабочей силы, готовой к постоянному профессиональному росту, социальной и профессиональной мобильности. Одним из важных стимулов повышения гражданской, патриотической и социальной активности будущих специалистов являются восстановление, наличие и дальнейшее развитие и совершенствование таких демократических институтов в студенческой среде как соуправление и самоуправление. ...

10 03 2021 11:36:52

ХАРАКТЕРИСТИКА ОВЦЕВОДСТВА РЕСПУБЛИКИ ТЫВА ПО ПОРОДНОМУ СОСТАВУ И ЗОНАЛЬНО-ТЕРРИТОРИАЛЬНОМУ РАЗМЕЩЕНИЮ ПОГОЛОВЬЯ ОВЕЦ

Представлены породный состав, структура и концентрация поголовья овец в разрезе природно-экономических зон Республики Тыва. ...

06 03 2021 10:53:56

АНАЛИЗ АССОЦИАЦИЙ ПО СОЧЕТАНИЯМ ГЕНОТИПОВ ПОЛИМОРФНЫХ ДНК – ЛОКУСОВ (TAG 1A И NCOI) DRD2, 256A/G ГЕНА SLC6A3 И ОБЪЕМНЫХ ХАРАКТЕРИСТИК МИНДАЛЕВИДНОГО КОМПЛЕКСА МОЗГА С ПОВЫШЕННОЙ ТРЕВОЖНОСТЬЮ

Впервые показано, что у крыс с генотипом А2/ А2 по локусу TAG 1A DRD2 с повышенной тревожностью имеет место сочетание генотипов N2N2 локуса NcoI DRD2 и А А локуса 256A/G гена SLC6A3, а также увеличение объемных характеристик базолатеральной группировки миндалевидного комплекса мозга. ...

25 02 2021 14:46:35

ЭКОЛОГИЯ ГОРОДА

Статья в формате PDF 84 KB...

24 02 2021 9:40:46

Некоторые вопросы занятости населения в крае

Статья в формате PDF 118 KB...

13 02 2021 8:59:24

ТИПОГРАФИКА (учебное пособие)

Статья в формате PDF 116 KB...

03 02 2021 9:11:28

ВЛИЯНИЕ ОЗОНИРОВАННОГО РАСТВОРА КРЕБСА НА ТОНИЧЕСКУЮ АКТИВНОСТЬ И &#914;-АДРЕНОРЕАКТИВНОСТЬ ГЛАДКИХ МЫШЦ ТРАХЕИ КРОВЫ

Озонированный (5х10 -7 г/мл) раствор Кребса не влиял на базальный тонус продольных полосок (n=21) трахеи 5 коров, а также на их тонус, вызванный ацетилхолином (10 -6 г/мл), но в 43% опытов достоверно уменьшал релаксирующий эффект адреналина (10 -7 г/мл), т.е. проявлял β-адреноблокирующий эффект. Это свойство озона необходимо учитывать при нормировании условий труда в производствах с повышенным образованием озона и при озонотерапии. ...

30 01 2021 11:46:28

АВТОМОБИЛЬНЫЙ ТРАНСПОРТ И КАЧЕСТВО КУРОРТА

Научно-технический прогресс приносит новый блага цивилизации и ставит новые проблемы перед ней. Автомобильный транспорт дал людям высокую степень мобильности и комфорта, за которые, однако, приходится расплачиваться ухудшением экологии. В статье изучена динамика роста численности автомобильного и грузового транспорта в городе Сочи и тот ущерб, который транспорт наносит экологии сочинского региона. ...

27 01 2021 4:24:39

ГЕМОРЕОЛОГИЯ И МОЗГОВОЙ КРОВОТОК У БОЛЬНЫХ ХРОНИЧЕСКИМИ ГНОЙНЫМИ СИНУИТАМИ ПРИ ТРАВМАХ ГОЛОВЫ

В работе изучен мозговой кровоток и его взаимосвязь с нарушением гемореологии у больных хроническими гнойными заболеваниями придаточных пазух носа в остром периоде черепно-мозговой травмы. ...

24 01 2021 5:57:17

ФОРМАЛИЗАЦИЯ ВЛИЯНИЯ ВНЕШНИХ СВЯЗЕЙ НА КАЧЕСТВО ОБРАЗОВАНИЯ В ФИЛИАЛЕ ВУЗА

Построена математическая модель системы управления качеством образования филиала В У За с учетом влияния внешних информационных связей, проведена оценка критерия качества и улучшения внешних связей вследствие внедрения информационной системы. ...

23 01 2021 14:32:12

О НЕКОТОРЫХ ПРОБЛЕМАХ МОЛОДОЙ КАРЕЛЬСКОЙ ПИСЬМЕННОСТИ

Статья посвящена проблемам становления новейшей лексики и орфографии новописьменного карельского языка. В статье отражены современные процессы развития лексикона, а также представлена к решению проблема так называемых послеложных падежей (элатива, аблатива, комитатива, аппроксиматива и терминатива). ...

10 01 2021 6:31:22

ЗИНЧЕНКО СЕРГЕЙ ИВАНОВИЧ

Статья в формате PDF 75 KB...

06 01 2021 0:50:44

Молекулы средней массы плазмы крови при сифилисе

Статья в формате PDF 106 KB...

04 01 2021 21:38:53

НАРУШЕНИЯ ЦЕНТРАЛЬНОЙ НЕРВНОЙ СИСТЕМЫ И ОРГАНОВ ЧУВСТВ СРЕДИ ПОПУЛЯЦИИ ШИРВАНСКОЙ ЗОНЫ АЗЕРБАЙДЖАНА

Среди населения Ширванской зоны Азербайджана проведены медико-генетические исследования по выявлению нарушений Ц Н С и органов чувств, установлены типы наследования патологий. Среди 119 больных с 14 наследственными и врожденными заболеваниями 71,43 % приходится на моногенные патологии с аутосомно-рецессивным типом наследования, что объясняется кровнородственными браками среди родителей пробандов. ...

01 01 2021 23:43:56

ЭКОЛОГИЧНАЯ ДРЕНАЖНАЯ ТЕХНИКА

Статья в формате PDF 266 KB...

27 12 2020 10:31:10

РАСПРОСТРАНЕНИЕ ПОЛИМОРФИЗМА ИНТЕРЛЕЙКИНА – 8 – 251 ТА СРЕДИ ЖЕНЩИН АЗЕРБАЙДЖАНА БОЛЬНЫМИ ЭНДОМЕТРИОЗОМ

Впервые было изучено интерлейкина – 8 – 251 Т А среди женщин Азербайджана больными эндометриозом. 50 практически здоровых и 70 женщин больных эндомертиозом находились под нашем наблюдением. Исследование показали что, генетический полиморизм интерлейкина – 8 А/ Т 251 играет роль в потогенезе эндометриоза. ...

19 12 2020 0:20:16

Еще:
Обзоры -1 :: Обзоры -2 :: Обзоры -3 :: Обзоры -4 :: Обзоры -5 :: Обзоры -6 :: Обзоры -7 :: Обзоры -8 :: Обзоры -9 :: Обзоры -10 :: Обзоры -11 ::

Последовательность подготовки научной работы может быть такой:

Выбор темы. Это важный этап. Во-первых, тема должна быть интересна не только вам, но и большинству слушателей, которым вы будете её докладывать, чтобы вы видели заинтересованность в их глазах, а не откровенную скуку.

Выбор целей и задач своей научной работы. То есть, нужно сузить тему. Например, тема: «Грудное вскармливание», сужение темы: «Грудное вскармливание среди студенток нашего ВУЗа». И если общая тема мало кому интересна, то суженная до рамок собственного института или университета, она становится интересной практически для всех слушателей. Целью может стать: «Содействие оптимальным условиям вскармливания грудью детей студентов нашего ВУЗа», а задачей — доказать, что специальные условия, созданные для кормящих студенток, не помешают их успеваемости, но уменьшат количество пропусков, академических отпусков и способствуют выращиванию здоровых детей — нашего будущего. Понятно, что эта тема подходит для студентов медицинских и педагогических ВУЗов, но и в других учебных учреждениях можно найти темы, интересные всем.

Разработать методы исследования и сбора информации. В случае с естественным вскармливанием, скорее всего, это будет анкетирование студенток, имеющих детей.

Систематизировать материал и подготовить презентацию.

Подготовиться к выступлению.

Выступить и получить: награду, удовольствие и опыт, чтобы в следующем году выступить ещё лучше и сорвать шквал аплодисментов, стать узнаваемым, а значит — более конкурентоспособным!