IT-Reviews    

УРАВНЕНИЯ ДЛЯ КООРДИНАЦИОННОГО ЧИСЛА В НЕУПОРЯДОЧЕНЫХ СИСТЕМАХ

c78089d0 Источник:
Хархардин А.Н. Топчиев А.И. Приводится вывод уравнений для расчета координационного числа в неупорядоченных конденсированных системах: в зернистых материалах, в композитах с твердой монодисперсной фазой, в жидких металлах и при критическом состоянии вещества. В выводах этих уравнений используется основной их топологический параметр – средняя плотность упаковки структурных элементов дискретности. Знание координационного числа элементов дискретности неупорядоченных систем необходимо для определения многих их свойств: физических, механических, реологических и др., совокупность которых вытекает из их топологических состояний: твердого, псевдотвердого, жидкого, псевдожидкого и критического. Статья в формате PDF 161 KB Геометрия ближайшего окружения частиц зернистых (дисперсных) материалов и плотность их упаковки определяют топологию неупорядоченных систем. В композиционных материалах в результате действия сил поверхностного натяжения между жидкой и твердой дисперсной фазой плотность упаковки ее частиц становится больше, чем в сухом дисперсном слое. Изменение плотности упаковки атомов при плавлении кристаллических веществ, например, металлов зависит кроме всего прочего от коэффициента компактности их кристаллической решетки. Если он меньше, чем плотность случайной (произвольной) упаковки невзаимодействующих твердых шаров (η=0,6403), то плотность упаковки атомов в жидкой фазе возрастает. Если он больше этой величины, как для большинства металлов, то плотность упаковки атомов, например, в жидких металлах зависит от температуры, межатомного взаимодействия, наличия жидкого полиморфизма или способности их к кластерообразованию. Число ближайшего окружения частицы в дискретной системе называется координационным числом. Структурная топология определяет координацию этих частиц в трехмерном пространстве координационным числом и плотностью их упаковки в системе. Структурная топология неупорядоченных систем - это наука о составе, уровнях организации структур топологического беспорядка и свойствах систем, наделенных дискретностью. Дискретность неупорядоченных систем может проявляться как на микроуровне в виде атомов, молекул и их ассоциаций, флуктуаций плотности, кластеров, магнитных доменов и пр., так и на макроуровне в виде флокул, агрегаций, блоков, высокоплотных образований и пр. Так, при измельчении зернистого материала возрастает электростатическое взаимодействие частиц, изменяется структура дисперсного слоя в результате уменьшения плотности их упаковки и координационного числа, вплоть до критического состояния, когда наступает сухое агрегирование микрочастиц. При дальнейшем их измельчении проявляются аномальные физические - структурные, магнитные и электрические свойства. Введение большого количества таких наполнителей в композиты и их переработка в изделия затрудняется. Следовательно, на этой стадии измельчения изменяется уровень организации структуры как твердой дисперсной фазы в слое, так и в наполненных композитах. Знание координационного числа в зернистом слое, твердой дисперсной фазы в композитах, в жидкостях требуется в теории композиционных материалов с электропроводящим дисперсным наполнителем, в теории жидкости и в практике металлургических процессов для расчета вязкости и термодинамических характеристик жидких металлов. Метод определения координационного числа по " радиальной функции распределения плотности" [1] - трудоемкий и показывает наибольшее его значение в первом максимуме этой кривой, который может соответствовать локальным скоплениям атомов, кластерным или плотным жидким полиморфным образованиям.

Наш приближенный метод основан на использовании рекуррентного уравнения для фазовых, топологических переходов вещества, полученного при математическом описании аэро и гидродинамики зернистого слоя в точках псевдоожижения - кипения в зависимости от порозрости неподвижного слоя. Это уравнение имеет вид [2]:

 

где η1,η - плотность упаковки частиц в псевдофазах, в близи (до и после) топологического перехода, К - гидродинамический параметр проницаемости слоя, так называемая "константа" Козени - Кармана:

Покажем, что знаменатель в скобках выражения (1) представляет собой координационное  число для невзаимодействующих частиц со случайной упаковкой в слое. Преобразуем уравнение (1) для точки ФТП типа "жидкость газ", "твердая дисперсная фаза газ", "псевдожидкая  фаза -газ" при критическом состоянии вещества к виду:

V - V1 = V / 3ln(2K)

где V, V1 - объем менее плотной и более плотной фазы в точке ФТП

Подставляя правую часть этого выражения в уравнение Менделеева-Клапейрона-Клаузиуса, получим:

 

где Т, q - температура и скрытая теплота ФТП.

Преобразуем это выражение к виду полагая что для псевдоожиженного слоя невзаимодействующих частиц в точке ФТП (в точке псевдоожижения - кипения слоя) выполняется равенство идеальных газов РV=RT, где параметры Р и V могут быть определены давлением псевдоожижающего агента и объемом псевдоожиженного слоя:

Интегрирование этого выражения в предположении, что скрытая теплота фазотопологического перехода q не зависит от температуры, дает

Преобразуем это выражение к виду

Выражение в скобках левой части этого равенства примем за коэффициент Z для конденсированной фазы (псевдотвердой, жидкой и псевдожидкой), а при критическом состоянии вещества он представляет собой критический коэффициент, равный по величине координационному числу атомов в плотной фазе флуктуаций плотности (в псевдожидкой фазе) ZC = RTC / PCVC.Следовательно коэффициент Z в точке ФТП представляет собой координационное число атомов (частиц) в псевдоконденсированной фазе, где RT≠ РV, тогда как в псевдоожиженной системе невзаимодействующих частиц RT=PV. В результате принятых соображений, получим

ZPVlnP = -3qln(2K)±cRT

либо

ZRTlnP = -3qln(2K)±cRT         (2)

Пологая, что q = ±RTlnP и пренебрегая постоянной интегрирования (с=0) для невзаимодействующих частиц монодисперсного слоя и элементов структуры конденсированной фазы, получим:

Z = 3ln (120,754· з51)              (3)

где  η1 - плотность упаковки элементов структуры в более плотной фазе в точке ФТП.

Из этого уравнения при з1 ≥0,4098 ≥Z 1 , что указывает на невозможность существования в природе жидкой конденсированной фазы с плотностью  упаковки з1 < 0,4098  невзаимодействующих элементов ее структуры со случайной их упаковкой (т.е. с топологическим  беспорядком),  а  при з1  ≥0,38337 ≥Z0  для газовой фазы.  Величина ZСК =120,754з51 представляет собою число элементов (частиц) в скоплении вместе с центральным.  Выражение  (3) можно записать в общем виде с учетом силовой константы их взаимодействия k:

Z = kln (120,754· з51), где k =3...4              (4)

Из этого уравнения для невзаимодействующих (k≤ 3) и взаимодействующих элементов структуры (k ≤4) соответственно в псевдожидкой фазе при з1=0,6403...0,6655 получим Z =7,69...8,27 и Z=10,3...11,0 . Величина η=0,6655 получена из уравнения (1) при η1=0,74048. Полагая, что для критического состояния вещества q=-RCTClnPC/3 из выражения (2) получим:

ZС = kСln (120,754· з5ж),                       (5)

где Ж - плотность упаковки атомов в плотной фазе флуктуаций плотности, которая незначительно отличается от величины ее в жидкой фазе при температуре кипения (плавления) вещества.

Для конденсированной жидкой фазы в точке кипения (плавления) вещества и в критической точке выражение (5) можно записать в общем виде:

где с - константа взаимодействия атомов в жидкой  фазе,  с ≤1.  Так  как  при ηж=0,6403...0,6038...0,5255 и с=1 из выражения (6) Zс=4...3,76...3,0; при с=3 Z=12...11,3...9, а при с=2,549 Zс=10,2...9,6...7,65.

Для уравнения (5) определим изменение величины kс в пределах изменения 3 ≤ Z ≤ 4 . Для этого воспользуемся наименьшем значением координационного числа  ZC =10зC = 2,549 для невзаимодействующих элементов псевдофазы:

Коэффициент kс=1,1769 приведем к кратному значению на одно из десяти возможных чисел в первой, во второй и в последующих сферах ближайшего окружения центральной частицы в трехмерном пространстве с увеличением их числа при разрыхлении структуры:

Из этого выражения при ηж≤0,6403 получим широкий спектр стандартных значений Zс, при четных значениях показателя степени n:Zc=2,65…2,74…2,82…2,92…3,02…3,12…3,22…3,33…3,44…3,55…3,67…3,79…3,92…4,05…4,18…, а при η1≤0,6038 – Zc=2,67…2,76…2,85…2,95…3,04…3,15…3,25…3,36…3,47…3,58…3,70…3,82…3,95…4,08…4,2….

Следовательно с уменьшением плотности упаковки частиц в псевдожидкой фазе коэффициент kс понижается, при этом возрастает число частиц в первой сфере ближайшего окружения. При n=10 эти ряды начинаются величинами Zc=3 и Zc=2,67 соответственно.

Коэффициент kс=1,5692 приведем к кратному значению на одно из двенадцати возможных чисел ближайшего окружения центрального атома в трехмерном пространстве с увеличением их числа при разрыхлении структуры:

где n≥0…12 – ряд чисел ближайшего окружения центрального атома в флуктуациях плотности. Из этого выражения при ηж≤0,6403 получим: Zc=2,663…2,765…2,870…2,980… 3,094…3,213…3,335…3,463…3,596…3,733…3,87 6…4,024, а при ηж=0,6038- Zc=2,36…2,45…2,54…2,64…2,75…2,85…2,95…3,07…3,18…3,30…3,43…3,56…3,70 …3,85…3,99…4,14. При n≥6 эти ряды начинаются величинами Zc=3,2 и Zc=2,85 соответственно, а при n=12 Zc=4 и Zc=3,56. При Z=10, что характерно для большинства жидких металлов, это выражение имеет вид:

Если плотность упаковки атомов определяется в жидкой фазе при температуре кипения (плавления) вещества, то в полученные результаты укладываются все значения Zc реальных газов и жидкостей [4]. Так, из уравнения Ван–дер-Вальса Zc=2,67, а для реальных газов Zс находится в пределах от 3,0 до 3,95, причем оно всегда больше 2,67. Невыполнимость уравнения (8) при подстановке в него hс объясняется тем, что в этом и подобных уравнениях согласно (1) используется плотность упаковки атомов в предшествующей более плотной фазе в точке ФТП. Полагаем, что в критической точке устанавливается состояние структуры вещества с регулярной плотностью упаковки сфер трехмерных колебаний атомов с предисторией ее при твердом полиморфном или кристаллическом состоянии, равной укладке атомов в гексагональной или в гранецентрированной (наиболее вероятных) решетках, где η1=0,74048 и Z=12, в тетрагональной (η1=0,6981; Z=10) или в объемно-центрированной (маловероятной) кристаллической решетке (η1=0,6802; Z=8). Вблизи критической точки развитие сильных флуктуаций плотности происходит по причине смены состояния структуры с регулярной укладкой сфер трехмерных колебаний атомов на случайную упаковку атомов. В прямолинейной зависимости координационного числа сфер трехмерных колебаний атомов от плотности их упаковки η1, коэффициенты при η1 становятся одинаковыми в окрестности критической точки. Следовательно, в критической точке ηс=(0,74048…0,6981)×ηсф, где ηсф – плотность упаковки атомов в сферах трехмерных их колебаний.

Второй подход к расчету координационного числа в сыпучих материалах и в твердой дисперсной фазе композитов основан на соответствии Zс=3…4 – критической плотности упаковки частиц на пороге предельного измельчения ηс≤0,2549. Учитывая непрерывность изменения фазотопологического состояния дисперсного слоя и соответствующее ему изменение плотности упаковки в нем частиц при его измельчении, прямолинейная интерполяция этого соответствия на произвольную величину плотности случайной упаковки невзаимодействующих и взаимодействующих частиц приводит к выражениям вида:

В работах российских и зарубежных исследователей структуры зернистого слоя, монодисперсных твердых шариков в слое отмечается один замечательный результат. Структура случайной упаковки твердых сферических частиц в зернистом слое характеризуется перманентностью локальных фрагментов с различной регулярной укладкой в них небольшого числа партикулярных частиц. Типы способов их укладки хорошо известны в кристаллохимии. При равной вероятности этих способов укладки в зернистом слое и соответствующих им координационных чисел, среднее координационное число в нем будет равно: Z= (12+10+8+8+6)/5 =8,8. Для случайной паковки идентичных частиц прямолинейная зависимость координационного числа в зернистом слое до наибольшей плотности их упаковки η1 =0,640289  при Z=8,8 будет иметь вид:

Среднее значение коэффициентов при η1 в уравнениях (9) и (10) дает аналогичный результат при η1 в уравнении (11). Из уравнения (11) при η1=0,574 и η1=0,59 Z=7,89 и Z=8,11. Экспериментальный результат при этом для частиц гранулированной сажи и стальных шариков соответственно равен: Z=7,87 и Z=8,06 [4].

Из уравнения (10) для случайной упаковки взаимодействующих частиц при η1=0,64029 получим Z=10. Преобразуем уравнение (3) для случайной упаковки частиц с учетом сил трения зацепления и заклинивания между ними в зернистом слое и сил адгезионного взаимодействия и вязкости в наполненных композитах до наибольшего значения Z=10 при η1=0,640289 следующим образом:

Отсюда, при η1=0,640289 с=3,602, а выражение для Z имеет вид:

Последний член в этом уравнении представляет собой зависимость коэффициента внутреннего трения зернистого слоя и композитов от η1: fвт=1,2η1, где с=1,2. Так, при η1=0,60…0,65…0,84 fвт=0,72…0,78… 1,0, что хорошо согласуется данными для кварцевого песка различной дисперсности. Для слабовзаимодействующих частиц со случайной их упаковкой в зернистом слое при η1=0,64029 и Z=8,8, при η1=0,6038 и Z=8 выражения, полученные подобно (12) будут имет вид:

Таким образом, для определения коэффициента внутреннего трения сыпучих материалов по формуле fвт=сη1 необходимо найти свободный член к уравнению (9), т.е. коэффициент «с» при Z=8,8 и η1≥0,6038 – для учета сил трения между частицами, а при η1≤0,6038 и Z=8 – для невзаи модействующих частиц округлой формы, либо коэффициент при η1 в уравнении (12) для данной плотности их упаковки в зернистом слое, а в композиционных материалах при Z=10.

Для всех значений Z≤8…10…12 и η≤0,68017…0,69813…0,74048 выражения для упрощенного расчета координационного числа взаимодействующих элементов структуры ме таллов в твердой и в жидкой фазе неупорядоченных систем получим путем преобразования уравнения (9) следующим образом:

Для исходных данных топологических параметров твердой фазы получим соответственно:

В уравнении (15) при Z=12 и η1=0,74048 выделим одну из величин плотности упаковки атомов в твердых металлах следующим образом:

Полученная при этом величина η1=0,726235 совпадает с плотностью упаковки атомов в гранецентрированной γ - полиморфной твердой модификации железа [5]. Вычисление по рекуррентному уравнению (1) при η1=0,726235 дает величину η=0,4722, совпадающей с ошибочной рекомендацией ее η=0,47±0,02 [6] для плотности упаковки атомов большинства жидких металлов. Из уравнения (15) для металлов при η1=0,73764… 0,72624…0,67468…0,66549…0,6505 получим: Z=11,95…11,76…10,93… 10,78…10,54. Первые две из этих величин относятся к твердой полиморфной фазе в точке ФТП. Следовательно уравнение (15) хорошо описывает многие металлы в полиморфных твердых и жидких модификациях, в тройной точке и в точке плавления с наличием жидкого полиморфизма к более плотным ГЦК и ГПУ структурам и кластерообразованию. Незначительное отличие уравнений (9) и (13) указывает на возможный легкий переход объемно-центрированной компактности сфер трехмерных колебаний атомов к случайной их упаковке, на неустойчивость высокотемпературных полиморфных модификаций с объемно-центрированной структурой в жидких металлах. При дальнейшем нагревании они переходят в случайную упаковку атомов, либо в плотнейшие гексагональную или гранецентрированную жидкую модификацию сфер трехмерных колебаний атомов в решетке с увеличением радиуса взаимодействия между ними. При критическом состоянии вещества объемно-центрированная компактность сфер трехмерных колебаний атомов маловероятна, либо совершенно невозможна.Учитывая, что в уравнении (1) выражение вид ln(120,754η15) дает число невзаимодействующих частиц, атомов или сфер их трехмерных колебаний с высокоплотной случайной упаковкой или с регулярной укладкой в фрагментах или в плотной фазе флуктуаций плотности, выражение для критического коэффициента в критической точке и вблизи нее следует записать в виде:

где с – силовая константа взаимодействия атомов, Z – наиболее вероятное число сфер трехмерных колебаний атомов в критической точке, Z=12…10.

Из уравнения (16) для ряда η1 с учетом полиморфизма: 0,74048; 0,73764; 0,72624; 0,710548; 0,70548; 0,6981; 0,68527; 0,6802 при с=1 и Z=12…10 получим ряд значений для Zс: 3,68…3,04; 3,67…3,06; 3,76…3,13; 3,89…3,24; 3,94…3,28; 4,0…3,34; 4,13…3,44; 4,18…3,49. Для дисперсного слоя частиц при Z=7,54 (9), Z=7,94 (4), Z=8,8 (11) согласно уравнению (16) при h1=0,6403 и с=1 получим: Zс=2,94; 3; 3,43; а при Z=10 (12) Zс=3,9. Как следует из результатов расчета, наиболее вероятное координационное число сфер трехмерных колебаний атомов в критической точке Z=10 с послойной гексагональной укладкой их в центре объема системы. В поле сил гравитации оно изменяется от низа к верху объема системы от Z=12 до Z=8. При этом возможно изменение Zс для слабовзаимодействующих элементов структуры: при Z=12 Zс=4,0, при Z=10 Zc=3,34, а при Z=8 Zc=2,67. Так, если среднее координационное число в неупорядоченной системе Z≤8, то для взаимодействующих элементов согласно (12) Z=10, в том числе и для большинства жидких систем и металлов Z=(12+10+8)/3=10 . Преобразуем уравнение (3) для учета взаимодействия (внутреннего трения) элементов структуры в жидкофазных системах путем приведения его к граничным параметрам кристаллических структур и тем самым найдем постоянную интегрирования в уравнении (2). Для граничных условий η1=0,74048 и =12 получим:

Отсюда, уравнение для возможно полного интервала значений Z с данным типом укладки элементов структуры имеем вид:

Последний член в этом уравнении с предистрией регулярной укладки атомов. Для приведения его к произвольной (случайной) упаковке атомов в жидкой фазе преобразуем его аналогичным (12) образом:

 

При η1≥0,4098 и η1≥0,38337 из этого уравнения получим соответственно Z≥2,18 и Z≥1,1, что указывает на число взаимодействующих атомов в газовой фазе. Аналогично получают уравнение для Z при граничных условиях для тетрагональной укладки при Z=10 и η1≥0,6981, для объемно- центрированной укладки при Z=8 и h ≥0,6802:

В полученных выше уравнениях (8, 8а, 8b) согласно выражениям (12) и (18) следует учитывать второй член, определяющий коэффициент внутреннего трения. Тогда полное выражение для критического коэффициента будет иметь вид:

где с=0,7085; 0,957; 1,2 – коэффициенты, характерные для данного типа структуры неупорядоченных систем (полиморфизма, кластеризации и случайной упаковки взаимодействующих элементов); kc=1,016423 – обобщенный коэффициент этого взаимодействия; kc=1,04609 – коэффициент для сильного взаимодействия, а kc=1,03826 – коэффициент для слабовзаимодействующих элементов неупорядоченных систем.

В уравнении (21) показатель n является неизвестной величиной, а величина knc зависит от индивидуальных свойств вещества, которая подлежит определению. Для известных значений Zc показатель n определяется подбором его значения для точного определения коэффициента внутреннего трения в виде:

fВ=cknc·з1                          (22)

Для большинства сыпучих материалов n=0. Так, при kc=1,016423 и с=0,957 из выражения (21) для неона при n=3 Zc=3,34, для аргона при n=8-8,5 Zc=3,47-3,50; для криптона при n=19-20 Zc=3,48-3,54; для ксенона при n=3 Zc=3,074; при kc=1,04609 и n=1 для неона Zc=3,33 (3,33), при n=3-3,5 для аргона Zc=3,49-3,57 (3,49-3,54), при n=7 для криптона Zc=3,50 (3,50), при n=1 для ксенона Zc=3,06 (3,07). Из выражения (21) при kc=1,01642, с=1,2 и n=0 для неона Zc=3,336 (3,33) и ксенона Zc=3,076 (3,07); для аргона при n=2 и kc=1,04609 Zc=3,50 (3,49), а при kc=1,01642 и n=6 Zc=3,53 (3,54), для криптона при n=6 Zc=3,53 (3,50), а при kc=1,01642 и n=16 Zc=3,50 (3,50). В скобках приведены экспериментальные данные.

Поскольку первые члены в уравнениях (17…20) исходят из случайной упаковки невзаимодействующих твердых сферических частиц, то поправка к ним на взаимодействие атомов в жидкой фазе определяется отношением плотности случайной упаковки твердых сфер, полученной из уравнения (1) для жидкой и псевдофазы из плотности их укладки в данной кристаллической решетке или полиморфной модификации, к фактической плотности упаковки атомов в жидкой фазе вещества - η1ж, а поправка ко вторым членам этих уравнений зависит от η1 и ее отклонения от таковой при случайной упаковке. При плавлении металлов жидкий полиморфизм и топологический беспорядок конкурирует в упаковке атомов в жидкой фазе, что приводит к повышению плотности их упаковки при наличии кластерных образований, либо к снижению ее при случайной их упаковке.

Следовательно, в точке плавления вещества при разрыхлении структуры в жидкой фазе в результате увеличения радиуса межмолекулярного взаимодействия получим:

где с – коэффициенты при η1 в уравнениях (18…20) для исходной данной кристаллической структуры; n – показатель, учитывающий влияние жидкого полиморфизма, кластеризации металлов или случайной упаковки атомов: n=0 – с преимуществом жидкого полиморфизма, n=1 – с преимуществом произвольной упаковки атомов в жидкой фазе при с=1,2, с=0,7085 и кластеризации атомов при с=0,957; значения η1 для данного типа кристаллической структуры или жидкой полиморфной модификации вычисляются из уравнения (1).

Приведем примеры расчета координационного числа в структуре жидких инертных газов и щелочных металлов при температуре плавления с учетом перегрева или переохлаждения.

В скобках приведены экспериментальные данные [1]. Данные для hж взяты из работы [1], а в скобках – справочные данные. Таким образом, жидкофазный полиморфизм металлов кластеризацию или случайную упаковку атомов в жидкой фазе можно обнаружить по равенству координационного числа, получаемого из радиальной функции распределения плотности и соответствующего вида одной из приведенных выше расчетных формул. Полученные уравнения для координационного числа в структуре неупорядоченных систем, наделенных дискретностью, позволяют с достаточной точностью вести расчет его величины для жидких металлов, коэффициента внутреннего трения этих систем и проектирование состава композиционных материалов с заданными свойствами.

Литература

  1. Скрышевский А.Ф. Структурный анализ жидкостей и аморфных тел. - М.: Высшая школа, 1980. - 328 с.
  2. Хархардин А.Н. Структурная топология неупорядоченных систем. // Вестник БелГТАСМ. Научно - теорет. ж - л. 2002. №2. - С.14 - 27.
  3. Беляев Н.М. Термодинамика. - Киев:Выща школа, 1987. - С. 36 - 37.
  4. Аэров М.Э., Тодес О.М. Гидравлические и тепловые основы работы аппаратов со стационарным и кипящим зернистым слоем. - Л.: Химия, 1968. - С. 8 - 52.
  5. Ахметов Н.С. Неорганическая химия.- М.: Высшая школа, 1975 - С. 619.
  6. Харьков Е.И., Лысов В.И., Федоров В.Е. Физика жидких металлов. - Киев. Выща школа,1979. - 247с.



Отзывы (через Facebook):

Оставить отзыв с помощью аккаунта FaceBook:

ПЕРСПЕКТИВЫ ДИАГНОСТИКИ И ПРОФИЛАКТИКИ ОПУХОЛЕЙ ЯИЧНИКОВ

Предложен арсенал эмбриональных белков – потенциальных маркеров опухолей яичников. Испытано более десятка новых эмбриональных белков, но строго специфичного белка для диагностики опухолей яичников не обнаружено; наиболее перспективным маркером остается С О В А-1. Достойное внимание уделено особенностям эволюции и механизму раннего распространения опухолевого процесса. Обсуждается роль беременности – как средства профилактики опухолевого заболевания яичников. В работе предпринята попытка осмыслить истоки и логику заболевания. ...

24 10 2020 12:38:43

ОКРУЖАЮЩАЯ СРЕДА И ГЕОГЕЛЬМИНТОЗЫ

Статья в формате PDF 237 KB...

21 10 2020 10:20:49

РАЗВИТИЕ ЕСТЕСТВЕННОНАУЧНЫХ СПОСОБНОСТЕЙ ОДАРЕННЫХ ДЕТЕЙ В СИСТЕМЕ ДОПОЛНИТЕЛЬНОГО ЭКОЛОГИЧЕСКОГО ОБРАЗОВАНИЯ

Система дополнительного экологического образования, базирующаяся на использовании современных педагогических моделей личностно-ориентированного обучения; применении передовых образовательных технологий, активных методов и форм полевой экологии, проектной деятельности, вовлечении в общественно-значимую исследовательскую и практическую работу, создает оптимальные условия для развития креативных способностей одаренных детей в естественнонаучной области. ...

20 10 2020 19:29:19

СТАТИСТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ФУНКЦИОНАЛЬНОГО СОСТОЯНИЯ ПРИ ХРОНИЧЕСКОЙ СЕРДЕЧНОЙ НЕДОСТАТОЧНОСТИ У БОЛЬНЫХ ИШЕМИЧЕСКОЙ БОЛЕЗНЬЮ СЕРДЦА

В статье описываются математические модели в виде уравнения регрессии, которое позволяет по клиническим признакам хронической сердечной недостаточности со статистической достоверностью предсказать результаты 6-минутного теста. ...

19 10 2020 4:23:41

КАЗАНСКИЙ КРАЙ: ЯЗЫК ПАМЯТНИКОВ XVI-XVII ВЕКОВ

Статья в формате PDF 282 KB...

18 10 2020 21:33:39

ЛЕЧЕНИЕ БОЛЬНЫХ С УКУШЕННЫМИ РАНАМИ

Статья в формате PDF 121 KB...

17 10 2020 7:21:12

ОЦЕНКА КЛИНИЧЕСКОЙ ЭФФЕКТИВНОСТИ АНТИБИОТИКОТЕРАПИИ САЛЬМОНЕЛЛЕЗОВ У ДЕТЕЙ

В работе проводились исследования 129 больных в возрасте от 1 месяца до 14 лет. У 68 (52,7 %) детей был диагностирован сальмонеллез еnteritidis, а у 61 (47,3 %) – сальмонеллез typhimurium. В ходе исследования проведена оценка клинической эффективности антибиотикотерапии с определением чувствительности к антимикробным препаратам. Выявлено, устойчивость клафорана к действию большинства бета-лактамаз, определена его клиническая эффективность в терапии тяжелых форм сальмонеллеза еnteritidis. Подтверждена не высокая эффективность монотерапии ципрофлоксацином. Рекомендована коррекция лечения путем использования комбинации препаратов – ципрофлоксацин + меронем. ...

13 10 2020 4:46:27

МЕХАНИЗМЫ РЕАЛИЗАЦИИ РАЗЛИЧНЫХ МЕТОДИК САМОУПРАВЛЕНИЯ С БИОЛОГИЧЕСКОЙ ОБРАТНОЙ СВЯЗЬЮ

Проводился анализ изменений биоэлектрической активности головного мозга и сверхмедленной активности в нервной, дыхательной и сердечно-сосудистой системах в процессе адаптивного биоуправления с биологической обратной связью по параметрам церебральной гемодинамики и медитации. Осуществлялась регистрация сверхмедленной активности нервной и сердечно-сосудистой систем и локализация биоэлектрической активности нервной системы. Выявлено вовлечение различных мозговых структур в реализацию поведенческих стратегий в группах обучившихся различным видам самоуправления, что говорит о различии механизмов достижения конечного результата. Полученные результаты свидетельствуют о вовлечении кардиореспираторной синхронизации в изменение биоэлектрической активности только при релаксации с помощью адаптивного биоуправления. Осуществлена проверка резонансной гипотезы релаксации, согласно которой при совпадении частот изменения дыхания, биоэлектрической активности мозга, сердечного ритма и сосудистого тонуса происходит усиление активности в вовлекаемых в резонансный ответ структурах. ...

07 10 2020 23:42:21

УРАВНЕНИЯ ДЛЯ КООРДИНАЦИОННОГО ЧИСЛА В НЕУПОРЯДОЧЕНЫХ СИСТЕМАХ

Приводится вывод уравнений для расчета координационного числа в неупорядоченных конденсированных системах: в зернистых материалах, в композитах с твердой монодисперсной фазой, в жидких металлах и при критическом состоянии вещества. В выводах этих уравнений используется основной их топологический параметр – средняя плотность упаковки структурных элементов дискретности. Знание координационного числа элементов дискретности неупорядоченных систем необходимо для определения многих их свойств: физических, механических, реологических и др., совокупность которых вытекает из их топологических состояний: твердого, псевдотвердого, жидкого, псевдожидкого и критического. ...

06 10 2020 5:18:30

ЭЛЕМЕНТЫ ТЕОРИИ ПРУЖИННЫХ ТРАНСПОРТЕРОВ

Статья в формате PDF 114 KB...

05 10 2020 20:38:14

АНОРОГЕННЫЕ ГРАНИТОИДЫ АБАЙСКОГО МАССИВА ГОРНОГО АЛТАЯ: ПЕТРОЛОГИЯ И ГЕОХИМИЯ

В статье приведены спорные данные предшественников по составу и особенностям становления гранитоидов Абайского массива среднего девона. Новые данные, полученные авторами по петрологии и геохимии, позволяют отнести гранитоиды массива к анорогенному типу ( А-тип) с щелочными минералами (рибекитом, астрофиллитом). Формирование массива протекало в три фазы: 1 – гранодиориты; 2 – граниты, умеренно-щелочные рибекитовые граниты; 3 – лейкограниты и лейкогранит-порфиры. Генерация их происходила в постколлизионной обстановке, инициированной плюмтектоникой. В северо-западной части массива в районе пологого погружения кровли, осложнённой куполовидным поднятием, зафиксировано аномальное обогащение флюидной магматогенной фазы летучими компонентами, и особенно фтором, что указывает на возможность обнаружения здесь редкометалльно-редкоземельного оруденения. ...

02 10 2020 11:54:54

МЕСТО ТРАДИЦИОННОЙ ПИЩИ В ОБРЯДОВОЙ КУЛЬТУРЕ МОРДВЫ

Статья в формате PDF 141 KB...

29 09 2020 2:39:15

КРАСОТА КАК СОЦИАЛЬНЫЙ КОНСТРУКТ

Статья в формате PDF 339 KB...

28 09 2020 15:11:26

КОВАЛЕВ АНАТОЛИЙ СПИРИДОНОВИЧ

Статья в формате PDF 338 KB...

18 09 2020 6:32:10

ВОДНЫЙ РЕЖИМ РЕК СЕВЕРО-ЗАПАДНОГО КАВКАЗА

Статья в формате PDF 126 KB...

16 09 2020 10:48:55

МАКРО-РЕЧЕВЫЕ АКТЫ КОРПОРАТИВНОГО ДИСКУРСА

Статья в формате PDF 224 KB...

14 09 2020 16:21:47

Я И МОЁ ЗДОРОВЬЕ

В статье излагается позиция автора о необходимости максимально ответственно относиться к своему здоровью, исходя из объективных предпосылок нашего времени. ...

09 09 2020 10:17:21

Загиров Умарасхаб Загирович

Статья в формате PDF 65 KB...

08 09 2020 3:21:48

ЭПИДЕМИЧЕСКАЯ БЕЗОПАСНОСТЬ ТУРИСТА

Статья в формате PDF 116 KB...

04 09 2020 14:28:48

АВТОРИТЕТ ПРЕПОДАВАТЕЛЯ-ВРАЧА

Статья в формате PDF 94 KB...

03 09 2020 1:30:31

Закономерности экспертных оценок о сотрудничестве России и Европейского Союза в сфере образования

Реформы в образовании ума человека происходят всегда до новых циклов экономического возрождения из кризисов. Это запаздывание весьма большое у России. В развитых странах цикл реформ в образовании начинается за 3–5 лет до начала экономических реформ. Но в России долго запрягают, а потом несутся напролом, на авось. Поэтому колебательное возмущение мнений экспертов превалирует над постоянством, – менталитет очень неровный. Предлагается принципиально новая методика, основанная на анализе устойчивых закономерностей с волновыми составляющими и полученная по конкретным экспертным оценкам. Цель статьи – кратко показать возможности методологии идентификации свойств поведения у групп экспертов, как неких условных популяций много знающих и оценивающих людей, а также привести критерии поведенческой динамики по тем или иным экспертным оценкам об интернационализации российского образования. ...

01 09 2020 10:35:44

ЭКОЛОГИЧНАЯ ДРЕНАЖНАЯ ТЕХНИКА

Статья в формате PDF 266 KB...

29 08 2020 13:23:41

ГЕНОФОНД АБОРИГЕННЫХ ЖИВОТНЫХ ЗАБАЙКАЛЬЯ

Статья в формате PDF 123 KB...

25 08 2020 19:39:22

Максимальная скорость окисления оксида азота

Статья в формате PDF 344 KB...

24 08 2020 9:11:26

ОСОБЕННОСТИ ФОРМИРОВАНИЯ ВЕГЕТАТИВНОГО ГОМЕОСТАЗА У ДЕТЕЙ ШКОЛЬНОГО ВОЗРАСТА В РАЗЛИЧНЫХ РЕГИОНАХ СИБИРИ

С целью изучения экологических и этнических особенностей адаптационно-компенсаторных механизмов у детей различных популяционных групп были обследованы 208 школьников 7-15 лет, проживающие в г. Красноярске и в Эвенкии. Проведена комплексная клинико-инструментальная оценка вегетативного статуса по показателям кардиоинтервалографии с клиноортостатической пробой. Показано, что в популяции жителей Эвенкии этническая принадлежность (дети эвенков) является одним из факторов, формирующих вегетативный гомеостаз. Они отличаются от детей пришлого населения Эвенкии по напряжению вегетативных механизмов регуляции. Полученные результаты необходимы для разработки региональных критериев здоровья, проведения коррекционных и профилактических мероприятий на донозологическом этапе. ...

23 08 2020 11:18:28

ФОРМИРОВАНИЕ СИСТЕМЫ МЕНЕДЖМЕНТА КАЧЕСТВА В ВУЗЕ

Статья в формате PDF 146 KB...

14 08 2020 2:41:16

РАЗРАБОТКА МАТЕМАТИЧЕСКОЙ МОДЕЛИ ПРОГНОЗИРОВАНИЯ ЗАБОЛЕВАЕМОСТИ КЛЕЩЕВЫМ ЭНЦЕФАЛИТОМ

Разработана математическая модель прогнозирования инфекционной заболеваемости на модели природно-очаговой инфекции, возбудителем которой является вирус клещевого энцефалита. Математическая модель представлена в виде аддитивного временного ряда, включающая тренд, случайные компоненты и сезонные составляющие, имеющие разную периодичность: менее года, 3 года и многолетнюю. ...

12 08 2020 16:56:14

ГОРМОНАЛЬНЫЕ ПОКАЗАТЕЛИ ПРИ РАЗНЫХ ТИПАХ ОЖИРЕНИЯ

Статья в формате PDF 112 KB...

10 08 2020 23:14:27

Медико-экологическая оценка состояния здоровья населения г. Сатпаев по данным обращаемости

Проведен анализ динамики заболеваемости по отдельным возрастным группам населения г. Сатпаев. Результаты показали, что общим явлением для всех возрастных групп было значительное учащение после аварии болезней органов дыхания, а у взрослых и подростков – болезней мочеполовой системы. Заболеваемость детского населения в 2007 г. возросла по сравнению с 2006 г. в 1,3 раза, различия достоверны с высоким уровнем вероятности такого утверждения (26782,3 ± 333,4‰ против 34393,1 ± 359,8‰, t = 15,3, p < 0,001). Анализ ситуаций, показал, что психо-эмоциональный стресс, вызывающий обострение многих хронических и появление новых нозологических форм заболеваний, тесно связан с психо-эмоциональным состоянием типа высшей нервной деятельности человека. ...

30 07 2020 16:45:54

ЭКОЛОГИЧЕСКАЯ СИТУАЦИЯ ГЕЛЕНДЖИКСКОЙ БУХТЫ

Статья в формате PDF 103 KB...

28 07 2020 13:37:20

МЕЛКИЕ МЛЕКОПИТАЮЩИЕ В ТРАНСФОРМИРОВАННЫХ УРБАНИЗАЦИЕЙ ЛЕСНЫХ ЭКОСИСТЕМАХ

По комплексу признаков оценили трансформированные урбанизацией лесные фитоценозы, и населяющие их сообщества мелких млекопитающих в лесопарково-парковой зоне крупного промышленного центра. Выявили, что хотя и наблюдаются общие закономерности в группировке фито- и зооценозов в зависимости от уровня и характера урбаногенного воздействия, но между ними нет полного соответствия. Специфика сообществ мелких млекопитающих определяется не только эдафо-растительными условиями. Ведущим параметром в трансформации сообществ является рекреация и сопровождающие ее факторы. ...

26 07 2020 7:55:28

УНИВЕРСАЛЬНЫЙ БЛОК УПРАВЛЕНИЯ ЭНЕРГОНАГРУЗКАМИ

Статья в формате PDF 122 KB...

15 07 2020 23:15:57

ОПТИМИЗАЦИЯ UTRA АЛГОРИТМА МЯГКОГО ХЭНДОВЕРА СЕТИ WCDMA

Статья в формате PDF 221 KB...

03 07 2020 22:36:39

АНАЛЬГЕТИЧЕСКАЯ АКТИВНОСТЬ ОТВАРОВ КОРЫ И ОДНОЛЕТНИХ ПОБЕГОВ ИВЫ БЕЛОЙ

Объект исследования – ива белая, которая распространена практически по всей территории Европейской части России. За рубежом препараты и Б А Д из различных видов ивы активно применяются при заболеваниях суставов. В соответствии с Руководством по доклиническому изучению новых фармакологических веществ ( Р. У. Хабриев, 2005) оценивали эффективность анальгетического действия и токсичность отваров коры и однолетних побегов ивы белой на мышах. Отвары коры и побегов ивы относятся к классу малоопасные соединения и проявляют выраженную анальгетическую активность, сопоставимую с препаратом сравнения анальгином (метамизол). ...

25 06 2020 19:31:13

ВИКТОР МИХАЙЛОВИЧ ПРОВОРОВ

Статья в формате PDF 87 KB...

21 06 2020 9:47:17

ДИПЛОМНОЕ ПРОЕКТИРОВАНИЕ (учебное пособие)

Статья в формате PDF 97 KB...

19 06 2020 14:43:49

О СТРОЕНИИ И ТОПОГРАФИИ КРАНИАЛЬНЫХ БРЫЖЕЕЧНЫХ ЛИМФАТИЧЕСКИХ УЗЛОВ У НОВОРОЖДЕННЫХ БЕЛОЙ КРЫСЫ

Краниальные брыжеечные лимфатические узлы у новорожденных белой крысы располагаются главным образом вдоль ствола одноименной артерии и отличаются слабо дифференцированной паренхимой. ...

18 06 2020 7:22:51

КОНФОРМАЦИОННАЯ ИЗОМЕРИЗАЦИЯ МЕТИЛБОРНОЙ КИСЛОТЫ

Статья в формате PDF 127 KB...

17 06 2020 2:19:14

Селицкий Александр Яковлевич

Статья в формате PDF 70 KB...

13 06 2020 8:13:43

Еще:
Обзоры -1 :: Обзоры -2 :: Обзоры -3 :: Обзоры -4 :: Обзоры -5 :: Обзоры -6 :: Обзоры -7 :: Обзоры -8 :: Обзоры -9 :: Обзоры -10 :: Обзоры -11 ::

Последовательность подготовки научной работы может быть такой:

Выбор темы. Это важный этап. Во-первых, тема должна быть интересна не только вам, но и большинству слушателей, которым вы будете её докладывать, чтобы вы видели заинтересованность в их глазах, а не откровенную скуку.

Выбор целей и задач своей научной работы. То есть, нужно сузить тему. Например, тема: «Грудное вскармливание», сужение темы: «Грудное вскармливание среди студенток нашего ВУЗа». И если общая тема мало кому интересна, то суженная до рамок собственного института или университета, она становится интересной практически для всех слушателей. Целью может стать: «Содействие оптимальным условиям вскармливания грудью детей студентов нашего ВУЗа», а задачей — доказать, что специальные условия, созданные для кормящих студенток, не помешают их успеваемости, но уменьшат количество пропусков, академических отпусков и способствуют выращиванию здоровых детей — нашего будущего. Понятно, что эта тема подходит для студентов медицинских и педагогических ВУЗов, но и в других учебных учреждениях можно найти темы, интересные всем.

Разработать методы исследования и сбора информации. В случае с естественным вскармливанием, скорее всего, это будет анкетирование студенток, имеющих детей.

Систематизировать материал и подготовить презентацию.

Подготовиться к выступлению.

Выступить и получить: награду, удовольствие и опыт, чтобы в следующем году выступить ещё лучше и сорвать шквал аплодисментов, стать узнаваемым, а значит — более конкурентоспособным!