IT-Reviews    

ЭЛЕКТРОМИОСТИМУЛЯЦИОННАЯ «ТРЕНИРОВКА» В УСЛОВИЯХ МЕХАНИЧЕСКОЙ РАЗГРУЗКИ МЫШЕЧНОГО АППАРАТА У ЧЕЛОВЕКА И ЕЕ ВЛИЯНИЕ НА МЫШЕЧНУЮ АРХИТЕКТУРУ

Коряк Ю.А. Статья в формате PDF 217 KB

В ходе эволюции функции и системы организма всего живого развивались в условиях гравитационных сил Земли. Физическая нагрузка, в том числе и гравитационная, необходима для сохранения размера и силы мышц у человека [Коряк, 1994; Кubo et al., 2000]. Условия микрогравитации сопровождаются снижением сократительных свойств мышц и активности тонической мускулатуры [Kozlovskaya et al., 1988; Bachl et al., 1997; Koryak, 2003]. Наибольшему действию микрогравитации подвергаются антигравитационные мышцы-разгибатели бедра [Kawakami et al., 2001; Akima et al., 2002] и, особенно, мышцы-разгибатели стопы [Bachl et al., 1997; Akima et al., 2002]. В этой связи, в условиях невесомости, чтобы устранить дефицит нагрузок и увеличить активность мышечных волокон, особенно тонического типа, участвующих в поддержании позы, используется физическая тренировка [Степанцов и др., 1972], которая занимает не только много времени, но и «отрывает» космонавта от его основной операторской деятельности. Более того, физическая тренировка, предусматривающая выполнение упражнений с малой интенсивностью, но большим объемом [Trappe et al., 2009], полностью не предотвращает развитие изменений в регуляции минерального обмена [Моруков, 1999], массы и силы сокращения мышц [Kawakami et al., 2001; Koryak, 2001; Коряк, 2006; Trappe et al., 2009].

Поверхностная функциональная нейромышечная электрическая стимуляция (ФНМЭС), как метод повышения функциональных возможностей скелетных мышц у человека, занимает особое место в системе электростимуляции мышц в медицине, поскольку ФНМЭС давно используется в клинике [Langley, Kato, 1915; Osborne, 1951; Бредикис, 1979; Knight, 1980; Кеrn et al., 2005]. Электротерапия в физической медицине применяется не только для восстановления функций мышц после повреждений, прежде чем пациенты способны самостоятельно (произвольно) выполнять физическую тренировку, но и как дополнительное средство тренировки мышечного аппарата у высококвалифицированных спортсменов (Коц, 1971; Koryak, 1995). Достоинством ФНМЭС, как одного из физиологических методов направленного на повышение функциональных возможностей мышечного аппарата, является возможность избирательно воздействовать на отдельные группы мышц человека.

Общеизвестный факт воздействия микрогравитации  это непропорционально большая потеря силы сокращения мышцы по сравнению с ее размером [LeВlanc et al., 1988; Kawakami et al., 2001], указывая, тем самым, что кроме «функциональной» атрофии существенный вклад в слабость мышцы вносят и другие факторы.

Важный детерминант функциональных свойств мышц (характеристических кривых сила-длина, сила-скорость, максимальная сила)  эта внутренняя архитектура мышцы [Gans, Bock, 1965; Gans, 1982; Gans, De Vries, 1987; Otten, 1988; Fukunaga et al., 2001; Herbert et al., 2002]. Сила мышцы изменяется на уровне сокращающихся волокон. Изменения в длине волокна при сокращении мышцы, таким образом, характеризуют генерирующие сократительные возможности мышцы. Поэтому данные изменения относительной архитектуры мышцы у человека могут быть одним из лимитирующих факторов (механизмов), ответственных за снижение сократительных ответом под воздействием микрогравитации.

Цель настоящего исследования  изучить изменения архитектуры медиальной икроножной мышцы (МИМ), латеральной икроножной мышцы (ЛИМ) и камбаловидной мышцы (КМ) у здоровых лиц под влиянием «сухой» водной иммерсии (ИМ) с применением продолжительной ФНМЭС «тренировки».

В исследовании приняла участие группа (n = 4) здоровых мужчин-добровольцев (22.8 ± 0.8 года, 79 ± 4 кг, 1.84 ± 0.1 м) после специального медицинского отбора. В качестве модели, имитирующей физиологические эффекты микрогравитации, использовали «сухую» водную ИМ [Шульженко, Виль-Вильямс, 1976] продолжительностью 7 суток.

ФНМЭС мышц передней и задней поверхности бедра и голени каждой конечности у человека проводили одновременно с использованием двух шести канальных электростимуляторов «СТИМУЛ НЧ-01», РОССИЯ), соединенных между собой кабелем синхронизации, и генерирующих двухполярные симметричные прямоугольные электрические импульсы длительностью 1 мс, частотой 25 Гц и амплитудой от 0 до 45 В. Синхронная стимуляция всех мышц предотвращала нежелательные движения конечностей. Длительность сокращения мышц при ФНМЭС составляла 1 с и интервал отдыха между сокращениями  2 с. Для ФНМЭС процедуры применялись «сухие» стимулирующие электроды (фирма «Axelgaard», USA), покрытые силиконовым токопроводящим гелем. ФНМЭС «тренировка» скелетных мышц выполнялась непосредственно при экспозиции испытуемого в ванне на протяжении 6 суток по 3 часа/день.

Для определения суставных моментов во время произвольных изометрических сокращений трехглавой мышцы голени (ТМГ) использовали изокинетический динамометр «Biodex 3 QuickSet», USA). Все измерения были выполнены на правой конечности за 3 суток до начала и на 6 день ИМ.

Для определения архитектуры МИМ, ЛИМ и КМ in vivo в реальном времени использовали В-режим изображения универсальной системы «SonoSite MicroMaxx», USA) с электронным линейным датчиком 7.5 МГц толщиной 1 см и длиной сканирующей поверхности 6 см. Визуализация изображения МИМ, ЛИМ и км осуществлялась в условиях покоя (пассивный режим) и при усилии 50 % МПС (активный режим) при нейтральной позиции в коленном и голеностопном суставах (угловая позиция - 90 °). Длина (L) мышечного волокна (пучка) определялась как расстояние между местом прикрепления волокна у поверхностного апоневроза до места вхождения в глубокие слои апоневроза мышцы (Kawakami et al., 1993). Угол (Θ) наклона мышечного волокна определялся как линия, образованная точкой (местом) прикрепления волокна у поверхностного апоневроза и местом вхождения в апоневроз мышцы (Fukunаgа et al., 1997). Все ультразвуковые изображения обрабатывались с использованием пакета программ «Dr. Reallyvision» (ООО «Альянс-Холдинг», РОССИЯ).

После ИМ с применением ФНМЭС «тренировки» максимальный суставной момент, развиваемый ТМГ, увеличился в среднем на 11.3 %. Анализ ультразвуковых изображений показал, что под влиянием ИМ архитектура мышц значительно изменяется при переходе от пассивного состояния к активному, и степень этих изменений в МИМ, ЛИМ и КМ была различной. После ИМ в условиях пассивного состояния L волокон в МИМ, ЛИМ и КМ уменьшилась на 12, 13 и 13 %; при активном состоянии  на 18, 22 и 21 %; Θ наклона мышечных волокон в условиях их пассивного состояния уменьшился на 22, 20 и 16 %; а при активном состоянии  на 17, 22 и 17 %, соответственно.

Применение ФНМЭС «тренировки» мышц нижних конечностей у человека в условиях ИМ способствует увеличению максимального произвольного суставного момента, развиваемого ТМГ. Тогда как отсутствие физических тренировок приводит к снижению МПС более чем на 30 % [Григорьева, Козловская, 1984; Koryak; 2001; Коряк, 2006]. Увеличение максимального суставного момента сопровождалось изменениями внутренней архитектуры МИМ, ЛИМ и КМ, которые были частично предотвращены, применяемыми упражнениями (ФНМЭС «тренировки»). После ИМ L и Θ наклона мышечных волокон были снижены, что может указывать на потерю не только последовательно расположенных, но и параллельно расположенных саркомеров. Функциональным последствием снижения L мышечных волокон может быть уменьшение укорочения волокон во время сокращения мышцы, что, вероятно, отразится на взаимоотношении сила-длина и сила-скорость мышцы. Более того, уменьшение числа последовательно соединенных саркомеров позволяет предположить, что величина развиваемого сокращения волокна будет сниженной. Эти наблюдения согласуются с результатами, полученными ранее в условиях иммобилизации конечности [Woo et al., 1982; Narici et al., 1998]. Меньший Θ наклона мышечного волокна во время сокращения мышцы после ИМ с использованием ФНМЭС «тренировки», по-видимому, частично компенсирует потерю силы, которая является постоянным «спутником» гравитационной разгрузки двигательного аппарата [Kozlovskaya et al., 1988; Васh et al., 1997; Koryak, 1995-2003] из-за более эффективной передачи силы, развиваемой волокнами к сухожилию. Уменьшение Θ наклона волокна, возможно, является результатом снижения жесткости сухожилия мышцы или мышечно-сухожильного комплекса [Кubo et al., 2000].

Увеличение максимального суставного момента после ИМ позволяет предположить, что ФНМЭС, по-видимому, способствует увеличению потока проприоцептивной афферентации [Gazenko et al., 1987] в условиях его дефицита при гравитационной разгрузке, что может способствовать также определенной роли в поддержании и нормализации активности систем управления движениями (по принципу обратной связи) [Бернштейн, 1966]. Более того, ФНМЭС, приложенная поверхностно к мышце человека, и вызывающая сокращение мышцы, деполяризует моторные аксоны, расположенные ниже электродов стимуляции. Таким образом, одновременная деполяризация сенсорных аксонов также может внести вклад в величину развиваемого сокращения мышцы через синаптический путь рекрутированием спинальных мотонейронов. После входа в спинной мозг сенсорный залп рекрутирует спинальные мотонейроны, ведущие к развитию центрального суставного момента. Это рекрутирование совместимо с развитием постоянных внутренних токов в спинальных или межнейронных мотонейронов [Collins et al., 2001, 2002]. Постоянные внутренние токи ведут к поддержанию некоторого уровня деполяризации (плато потенциалов) и в связи с этим, становится совершенно понятным, что они играют важную роль в регулировании частоты импульсации в нормальных условиях [Collins et al., 2002; Gorassini et al., 2002; Heckman et al., 2005]. Максимальная активация центрального вклада может быть выгодной для увеличения силы сокращения мышцы.

В заключении, полученные результаты позволяют сделать вывод, что, во-первых, архитектура разных головок ТМГ значительно разнится, отражая, вероятно, их функциональные роли, во-вторых, различные изменения длины L и Θ перистости волокон между разными мышцами, вероятно, определяются различиями в способности развивать силу и упругих характеристик сухожилий или мышечно-сухожильного комплекса мышц. Наконец, в-третьих, ФНМЭС оказывает, в целом, тренировочное воздействие на стимулируемые мышцы - частично уменьшает глубину и скорость снижения силы сокращения, а также атрофические процессы мышцы, вызванной механической разгрузкой.




Отзывы (через Facebook):

Оставить отзыв с помощью аккаунта FaceBook:

КАРАМОВА ЛЕНА МИРЗАЕВНА

Статья в формате PDF 77 KB...

19 01 2020 17:19:35

ВИРТУАЛЬНЫЕ ИНФОРМАЦИОННО-ИЗМЕРИТЕЛЬНЫЕ ПРИБОРЫ

Статья в формате PDF 265 KB...

17 01 2020 12:33:33

ШОШОНИТОВЫЕ ГРАНИТОИДЫ ТИГИРЕКСКОГО МАССИВА АЛТАЯ: ГЕОХИМИЯ, ПЕТРОЛОГИЯ И РУДОНОСНОСТЬ

риведены геологические, геохимические и петрологические данные по шошонитовым гранитоидам Тигирекского массива Алтая. В составе массива выделены 5 фаз: 1 – габбро; 2 – диориты, монцодиориты; 3 − сиениты, гранодиориты, граносиениты; 4 – граниты, умеренно-щелочные граниты; 5 – лейкограниты, умеренно-щелочные лейкограниты с флюоритом. Породные типы массива отнесены к нормальной известково-щелочной и высококалиевой шошонитовой сериям. Сиениты и монцодиориты тяготеют по составу к банакитам. В процессе становления массива проихсодила диффреренциация глубинного очага с фракционированием редкоземельных элементов, что отразилось на соотношении в породах элементов групп LILE и HFSE со значительной деплетированностью последних. В породах происходила смена типа тетрадного фракционрования редкоземельных элементов, что связано с различной насыщенностью расплавов флюидами и летучимим компонентами. С массивом связаны месторождения и проявления железа, вольфрамаа, молибдена, бериллия, аквамарина, горного хрусталя и раухтопаза. ...

16 01 2020 12:22:32

ПРОБЛЕМЫ КАЧЕСТВА ОБРАЗОВАНИЯ

Статья в формате PDF 239 KB...

07 01 2020 17:47:13

САТУРАТОРЫ ИНЖЕКТОРНОГО ТИПА

Статья в формате PDF 91 KB...

29 12 2019 16:53:42

РАЗРАБОТКА АЛГОРИТМИЧЕСКИХ МОДЕЛЕЙ ОТБРАКОВОЧНЫХ ИСПЫТАНИЙ РПУ

Разработан пакет графических алгоритмических моделей отбраковочных испытаний радиоприемных устройств, изготавливаемых и выпускаемых предприятием, как первый шаг к последующей автоматизации. Показано преимущество разработанных моделей по сравнению с действующей текстовой инструкцией по проведению испытаний. ...

28 12 2019 4:38:11

О ПРОБЛЕМЕ ПОДРОСТКОВОЙ НАРКОМАНИИ В РОССИИ

Применение большого спектра фармакологических препаратов, как природного происхождения, так и синтезированных требует создания стабильных условий, которые необходимы лечащему врачу при проведении все более усложняющихся ступеней вмешательства человека взаимодействие среды и живого организма. Неизбежным следствием применения лекарственных препаратов без учета механизма действия на структурно-функциональные свойства мембранных взаимодействий, является развитие побочных реакций, отличающихся по своей природе, тяжести клинических проявлений и скорости нарастания. ...

22 12 2019 7:53:50

РЕГИОНАЛЬНАЯ БАНКОВСКАЯ СИСТЕМА И ЭКОНОМИКА

Статья в формате PDF 102 KB...

18 12 2019 19:36:11

БОДРОВА ТАМАРА НИКОЛАЕВНА

Статья в формате PDF 156 KB...

16 12 2019 16:22:11

УРАВНЕНИЯ ДЛЯ КООРДИНАЦИОННОГО ЧИСЛА В НЕУПОРЯДОЧЕНЫХ СИСТЕМАХ

Приводится вывод уравнений для расчета координационного числа в неупорядоченных конденсированных системах: в зернистых материалах, в композитах с твердой монодисперсной фазой, в жидких металлах и при критическом состоянии вещества. В выводах этих уравнений используется основной их топологический параметр – средняя плотность упаковки структурных элементов дискретности. Знание координационного числа элементов дискретности неупорядоченных систем необходимо для определения многих их свойств: физических, механических, реологических и др., совокупность которых вытекает из их топологических состояний: твердого, псевдотвердого, жидкого, псевдожидкого и критического. ...

12 12 2019 19:44:50

ПЯТИСТЕРЖНЕВАЯ ФЕРМА СЛОЖНОГО ТИПА

Статья в формате PDF 300 KB...

01 12 2019 21:37:31

СОСТОЯНИЕ ЗВЕРОВОДСТВА В ЯКУТИИ

Обзор состояния кормления и причин падежа молодняка лисиц в  О О О « Покровское зверохозяйство» Республики Саха ( Якутия) в 2010 г. ...

28 11 2019 1:19:51

АНДРАГОГИЧЕСКИЕ ПРОБЛЕМЫ В ПРОФЕССИОНАЛЬНОЙ ПОДГОТОВКЕ МЕДИЦИНСКИХ РАБОТНИКОВ

Обучение взрослых дипломированных специалистов существенно отличается от обучения студентов. Если на додипломном уровне приемлема педагогическая модель обучения с доминантой обучающего, то на этапе же последипломного образования необходимо руководствоваться продуктивной андрагогической моделью обучения. Её главный постулат: обучающийся – ведущее звено в процессе образования. Исходя из этого, в течение ряд лет мы используем методику психологического типирования личности американского исследователя Д. Кейрси. И на основании выявления уровней подготовки, психофизиологических и личностных особенностей обучающихся практикуем деловые игры, мастер-классы, создание взрослыми обучающимися порт-фолио непосредственно на рабочем месте. Результаты положительные. ...

27 11 2019 9:29:10

ЖАК СЕРГЕЙ ВЕНИАМИНОВИЧ

Статья в формате PDF 115 KB...

07 11 2019 7:48:49

Клиника и лечение кишечного амебиаза

Статья в формате PDF 104 KB...

05 11 2019 4:31:42

ГОРНЫЕ ПОРОДЫ: АЛГОРИТМЫ ОПРЕДЕЛЕНИЯ

Статья в формате PDF 157 KB...

02 11 2019 17:42:54

ДИАГНОСТИКА ЖЕЛЕЗОДЕФИЦИТНОЙ АНЕМИИ У ДЕТЕЙ

Статья в формате PDF 302 KB...

01 11 2019 16:19:47

ПЕТРОЛОГИЧЕСКИЕ ЧЕРТЫ МЕТАЛЛОГЕНИИ ЗОЛОТА

Статья в формате PDF 298 KB...

31 10 2019 4:56:52

Гиперболическая модель задачи о фазовом переходе

Статья в формате PDF 117 KB...

30 10 2019 19:49:40

ОПРЕДЕЛЕНИЕ ФАКТОРОВ, ВЛИЯЮЩИХ НА КАЧЕСТВО ИЗМЕРЕНИЙ ПРИБОРА МАЭС

Существующие методы атомной эмиссионной спектроскопии для исследования состава металлов и сплавов используются во всех отраслях машиностроения. По мнению авторов, современные методы уже не обеспечивают необходимых точностей измерений. В данной работе авторами проведены исследования влияния внешних факторов на точность измерений прибора атомно-эмиссионной спектроскопии. ...

27 10 2019 18:49:18

САЛЬМОНЕЛЛЕЗ

Статья в формате PDF 102 KB...

23 10 2019 7:33:24

Право и долг в самосознании русского народа

Статья в формате PDF 113 KB...

20 10 2019 13:27:35

Регулирование отношений между государствами

Статья в формате PDF 112 KB...

16 10 2019 15:57:31

ОЦЕНКА КЛИНИЧЕСКОЙ ЭФФЕКТИВНОСТИ АНТИБИОТИКОТЕРАПИИ САЛЬМОНЕЛЛЕЗОВ У ДЕТЕЙ

В работе проводились исследования 129 больных в возрасте от 1 месяца до 14 лет. У 68 (52,7 %) детей был диагностирован сальмонеллез еnteritidis, а у 61 (47,3 %) – сальмонеллез typhimurium. В ходе исследования проведена оценка клинической эффективности антибиотикотерапии с определением чувствительности к антимикробным препаратам. Выявлено, устойчивость клафорана к действию большинства бета-лактамаз, определена его клиническая эффективность в терапии тяжелых форм сальмонеллеза еnteritidis. Подтверждена не высокая эффективность монотерапии ципрофлоксацином. Рекомендована коррекция лечения путем использования комбинации препаратов – ципрофлоксацин + меронем. ...

15 10 2019 8:21:30

ОЦЕНКА СИНТЕЗИРОВАННЫХ СОРБЕНТОВ

Статья в формате PDF 208 KB...

14 10 2019 10:58:36

ТЕОРИЯ СТРУКТУРНЫХ ФАЗОВЫХ ПЕРЕХОДОВ LiCO2

Статья в формате PDF 97 KB...

01 10 2019 16:55:17

МОЛЕКУЛЯРНАЯ ПАТОЛОГИЯ АЛЬДЕГИДНАЯ БОЛЕЗНЬ

Статья в формате PDF 119 KB...

19 09 2019 1:26:58

МЕТОД КОНТРОЛЯ КАЧЕСТВА СРЕДЫ ОБИТАНИЯ В МЕГАПОЛИСЕ

Статья в формате PDF 218 KB...

18 09 2019 23:44:15

ТЕПЛОВОЙ РАЗГОН В ЩЕЛОЧНЫХ АККУМУЛЯТОРАХ

Статья в формате PDF 121 KB...

17 09 2019 3:17:11

МОДЕЛЬ СТАРЕНИЯ В ФОРМЕ ОНТОГЕНЕТИЧЕСКОГО КОМПРОМИССА ПРОЦЕССОВ КАНЦЕРОГЕНЕЗА И ОКСИДАТИВНОГО СТРЕССА

В рамках данной статьи была построена математическая модель старения в форме онтогенетического компромисса процессов канцерогенеза и оксидативного стресса. Старение присуще всем объектам живой и неживой природы. Накопление повреждений в результате оксидативногостресса приводит к зависимому от возраста повреждению тканей, канцерогенезу и, наконец, к старению. С одной стороны, действие активных форм кислорода приводит к повреждению клеток, и, как следствие, к раку. С другой стороны, активные формы кислорода являются средством борьбы с опухолевыми клетками. Компромисс состоит в поддержании уровня свободных радикалов, эффективно подавляющего опухолевые клетки, и в то же время не сильно наносящего вред организму. На основе математической разработана имитационная компьютерная модель старения с возможностью изменений параметров интенсивностей появления опухолевых клеток, размножения, негативного воздействия свободных радикалов, ответа иммунитета. Проведен эксперимент по выявлению максимальной средней продолжительности жизни в зависимости от параметра гомеостатической характеристики. ...

11 09 2019 3:51:21

Еще:
Обзоры -1 :: Обзоры -2 :: Обзоры -3 :: Обзоры -4 :: Обзоры -5 :: Обзоры -6 :: Обзоры -7 :: Обзоры -8 :: Обзоры -9 :: Обзоры -10 :: Обзоры -11 ::

Последовательность подготовки научной работы может быть такой:

Выбор темы. Это важный этап. Во-первых, тема должна быть интересна не только вам, но и большинству слушателей, которым вы будете её докладывать, чтобы вы видели заинтересованность в их глазах, а не откровенную скуку.

Выбор целей и задач своей научной работы. То есть, нужно сузить тему. Например, тема: «Грудное вскармливание», сужение темы: «Грудное вскармливание среди студенток нашего ВУЗа». И если общая тема мало кому интересна, то суженная до рамок собственного института или университета, она становится интересной практически для всех слушателей. Целью может стать: «Содействие оптимальным условиям вскармливания грудью детей студентов нашего ВУЗа», а задачей — доказать, что специальные условия, созданные для кормящих студенток, не помешают их успеваемости, но уменьшат количество пропусков, академических отпусков и способствуют выращиванию здоровых детей — нашего будущего. Понятно, что эта тема подходит для студентов медицинских и педагогических ВУЗов, но и в других учебных учреждениях можно найти темы, интересные всем.

Разработать методы исследования и сбора информации. В случае с естественным вскармливанием, скорее всего, это будет анкетирование студенток, имеющих детей.

Систематизировать материал и подготовить презентацию.

Подготовиться к выступлению.

Выступить и получить: награду, удовольствие и опыт, чтобы в следующем году выступить ещё лучше и сорвать шквал аплодисментов, стать узнаваемым, а значит — более конкурентоспособным!