IT-Reviews    

ПРОБЛЕМЫ ПОДГОТОВКИ УЧИТЕЛЕЙ НАЧАЛЬНЫХ КЛАССОВ К ОБУЧЕНИЮ МАТЕМАТИКЕ В СИСТЕМЕ ПЕДАГОГИЧЕСКОГО ОБРАЗОВАНИЯ СОВРЕМЕННОЙ РОССИИ

c78089d0 Источник:
Царева С.Е. Статья в формате PDF 173 KB

Подготовка учителя начальных классов в России, как известно, в целом и, в частности к обучению учащихся математике осуществляется в педагогических колледжах и педагогических вузах по Государственным образовательным стандартам 2005 года для высшего образования и 2002 года для среднего педагогического образования как по программам специалитета, так и по программам бакалавриата. С 2011 года предполагается переход на стандарты третьего поколения - на Федеральные государственные образовательные стандарты высшего образования. Одна из важных и нерешенных проблем подготовки будущего учителя к обучению детей математике - это проблема обеспечения готовности будущего учителя к согласованию математической грамотности такого обучения с возрастными возможностями детей, с их субъектным опытом - опытом дошкольного и внешкольного познания мира. Без такого согласования истинное содержание математического знания, выраженное как в грамотном математическом тексте, так и безграмотном, будет недоступно детям.

В традиции российского педагогического образования осуществлять рассматриваемую подготовку через курса - «Математика» и Методика преподавания математики» (или в педагогическом колледже «Теоретические основы начального курса математики» и «Методика преподавания математики». Названные дисциплины могут быть представлены отдельными курсами, а могут быть интегрированы в один или два курса. Именно объединение названных курсов, интеграция математической и методической подготовки студентов могут служить одним из важнейших средств решения названной выше проблемы.

Курс математики начальной школы является вводным интегрированным курсом, формирующим общие представления учащихся о математике, об особенностях математического знания и математического языка. Его содержание, педагогические, методические позиции учителя определяют в целом отношение учащихся к математике. Одна из основных задач этого курса - обеспечить понимание учащимися математических понятий, действий, правил, символов как способов обозначения, хранения и передачи собственного и чужого опыта и знания, как средств, которые наряду с естественным языком и языками других областей знания делают более эффективным общение и познание мира. Математика должна выступить перед детьми как инструментов познания, дополняющих и расширяющих возможности познания мира, себя в мире.

Для обеспечения соответствующей готовности студентов будущих учителей начальных классов математические знания студента должны быть поняты и освоены с позиций методологических знаний о сущности математики и математических методов и способов познания, под углом зрения психологических особенностей становления и развития у младших школьников математических представлений, математических средств познания мира и математических способов действий, с позиций современных эффективных педагогических парадигм. Выполнение этого требования по отношению к любому, изучаемому студентами математическому вопросу, выводит нас на проблему представления этого вопроса в обучении математике, т.е. на вопросы методики обучения, на проектирование путей реализации целей и задач изучения математики в начальной школе. Поддержку этой позиции мы находим в работах великого математика Анри Пуанкаре (1854-1912). Вот одно из многих таких соображений А. Пуанкаре об обучении математике: «Что разумеют под хорошим определением? Для философа или для ученого это есть определение, которое приложимо ко всем определяемым предметам и только к ним; такое определение удовлетворяет правилам логики. Но при преподавании дело обстоит иначе. Здесь хорошим определением будет то, которое понято учениками. ... определения, наиболее понятные для одних людей, не будут совпадать с определениями, которые подходят для других» [2, С. 455, 457-458]. Изучение вопросов методики обучения математике не будет эффективным, если при этом не обращаться к содержанию изучаемого. Необходимость такого обращения также подчеркивал А. Пуанкаре: «Размышлять о том, каким образом внедрить новые математические понятия в девственный ум ребенка, - значит, в то же время размышлять о том, каким образом эти понятия были приобретены нашими предками; значит, следовательно, размышлять об их истинном происхождении, а это, по существу, значит размышлять об истинной их природе» [2, c. 370.]. Такое размышление осуществимо лишь при возможности обратиться к содержанию понятий, способам выражения в языке, отношениям и способам действий с соответствующими математическими объектами, т. е. при возможности непосредственного обращения к математике, что в интегрированном курсе сделать легче.

В интегрированном курсе методические подходы легко конструируются и обосновываются как с позиций психологии и педагогики, так и с позиций сущности математического знания, логики содержательных связей между математическими понятиями, что особенно важно для учителя начальной школы. В изолированных курсах математики и методики создать условия для этого труднее. Одна из причин этой трудности - временнáя разорванность рассмотрения соответствующих вопросов. Ее нельзя полностью устранить, даже если в учебных планах эти курсы будут идти параллельно и их будет вести один преподаватель.

Изучение математики в интегрированном курсе идет более осмысленно, мотивированно. Любой вопрос математики обязательно проецируется на психологические особенности студентов и учащихся начальной школы, на педагогические, методические проблемы, вопросы и положения, а методический вопрос - на математические. Математика помогает освоению методики, а методика - освоению математики. У преподавателя появляются возможности строить изучение в соответствии с особенностями обучающихся: студентов и учащихся начальной школы.

Это не означает, что интегрированный курс лишен трудностей. Такие трудности есть. Основная из них - необходимость любое математическое понятие и утверждение пропускать через призму причин происхождения, вариантов выражения в языке, через призму детского сознания. Великий математик ХХ века Г. Вейль [1] утверждал, что наибольших успехов в математике можно достичь при условии чередования работы внутри математики и работы «над математикой», в сфере философского осмысления природы математического знания. Он считал, что работая только внутри, мы неизбежно потеряем ориентиры направления движения и уже не будем знать, зачем и куда мы движемся в математических действиях, понятиях, утверждениях. Если же мы будем находиться только в слое «над математикой», то в конце концов потеряем предмет разговора и наши суждения будут суждениями ни о чем. Эти трудности могут быть у преподавателей, которые имеют большой «стаж» изолированного ведения объединенных нами учебных дисциплин. Первое время трудности есть у части студентов, школьный опыт которых сформировал у них взгляд на математику как на некоторый свод формальных однозначных правил и утверждений, выработал репродуктивный тип учебной деятельности, тогда как при изучении интегрированного курса в большей мере, чем при изучении раздельном, требуется деятельность продуктивная.

Список литературы

  1. Вейль Г. Математическое мышление. М., 1989.
  2. Пуанкаре А. О науке. Пер. с фр. /Под ред. Л.С. Понтрягина. М., 1990.



Отзывы (через Facebook):

Оставить отзыв с помощью аккаунта FaceBook:

ГЕНОФОНД АБОРИГЕННЫХ ЖИВОТНЫХ ЗАБАЙКАЛЬЯ

Статья в формате PDF 123 KB...

14 09 2020 22:32:45

К ВОПРОСУ О ДОСТУПНОСТИ ЖИЛЬЯ В ГОРОДЕ ВЛАДИВОСТОКЕ

Статья в формате PDF 100 KB...

12 09 2020 22:16:59

РОССИЙСКАЯ АКАДЕМИЯ ЕСТЕСТВОЗНАНИЯ

Статья в формате PDF 199 KB...

08 09 2020 15:30:21

ПОДТВЕРЖДЕНИЕ ЭФФЕКТИВНОСТИ ПРИМЕНЕНИЯ ПРЕПАРАТА «КОРТЕКСИН» У ПОДРОСТКОВ МЕТОДОМ ИК-СПЕКТРОМЕТРИИ

Малоизученным направлением в диагностике психосоматических заболеваний является исследование физико-химических характеристик крови. Методы, применяемые в диагностике и контроле лечения психосоматических заболеваний в целом, и задержке психического развития в частности ( З П Р), являются достаточно субъективными. Во многом это обусловлено отсутствием однозначных лабораторно-диагностических методов, позволяющих осуществлять диагностику на ранних этапах заболевания. Целью нашего исследования явилось изучение особенностей И К – спектра сыворотки крови детей подросткового возраста. В качестве субстрата для исследования использовали сыворотку крови больных детей, которую затем подвергали И К-спектроскопии с регистрацией спектров поглощения в области 3500-963 см-1. Исследована сыворотка крови 30 детей с диагнозом З П Р и 30 здоровых, сопоставимых по возрасту и полу. Было проведено сравнение И К-спектра сыворотки крови больных с  З П Р и здоровых доноров. Достоверно выявлена разница показателей инфракрасной спектрометрии в норме и патологии, а так же проверена эффективность применяемой терапии. Таким образом, с помощью И К-спектрометрии установлены особенности спектров сыворотки крови детей подросткового возраста и выявлены отличия в спектре у детей с  З П Р и динамические изменения в процессе лечения, что может использоваться для диагностики данной патологии, а так же для контроля за эффективностью проводимого лечения. ...

05 09 2020 0:24:32

СЛЕПАЯ КИШКА У БЕЛОЙ КРЫСЫ

Статья в формате PDF 253 KB...

04 09 2020 7:49:24

АНАЛИЗ ФАРМАКОТОКСИЛОГИЧЕСКОГО ДЕЙСТВИЯ ЭТАЦИЗИНА И ДИМЕФОСФОНА ПРИ ХРОНИЧЕСКОМ СТРЕССЕ

В работе исследовали влияние этацизина и димефосфона на смертность белых мышей и динамику поведенческих реакций в условиях хронического гиподинамического стресса. Показано токсическое влияние этацизина: увеличение смертности животных и негативное влияние на поведенческие реакции. Димефосфон не оказывал влияния на летальность и проявлял стресспротекторное ...

03 09 2020 0:31:19

ВЛИЯНИЕ ХАРАКТЕРИСТИК СТРУКТУРНОЙ ГЕТЕРОГЕННОСТИ НА ПРОЦЕССЫ ИЗНАШИВАНИЯ ТЕРМОДИФФУЗИОННЫХ ПОКРЫТИЙ

В течение продолжительного времени проводились триботехнические испытания различных термодиффузионных покрытий на изнашивание при трении скольжения. Они позволили сделать ряд принципиальных обобщений по взаимообусловленности структурного состояния покрытий и кинетики процессов износа. В результате моделирования фрикционных процессов широкого класса материалов было получено эмпирическое уравнение для коэффициента трения, отражающее параметрическое влияние свойств материала покрытий, реологию поверхностного трения и свойство смазочного материала. ...

29 08 2020 14:21:29

СОБСТВЕННОСТЬ И СВОБОДА

Статья в формате PDF 112 KB...

27 08 2020 21:56:55

АУДИТ ТУРИСТСКИХ ОРГАНИЗАЦИЙ (учебное пособие)

Статья в формате PDF 107 KB...

15 08 2020 5:35:14

ЭКОЛОГИЯ ГОРОДА

Статья в формате PDF 84 KB...

09 08 2020 12:57:59

ФИЛОСОФСКИЕ ОСНОВАНИЯ ОБЩЕЙ ТЕОРИИ ПАТОЛОГИИ: ПРИНЦИП ПОДОБИЯ

В основе современной научной теории патологии должны лежать фундаментальные философские принципы бытия материи, из которых выводятся и обосновываются ее основные положения. В данной работе проведен анализ принципа подобия как частного выражения философского принципа субстанциального единства мира. Делается вывод, что один общий биологический процесс лежит в основе как нормальных, так и патологических явлений: приспособление есть сущность болезни. ...

06 08 2020 6:42:57

ЛАЗЕР КАК ИСТОЧНИК АКТИВНОГО ИЗЛУЧЕНИЯ

Статья в формате PDF 311 KB...

04 08 2020 7:31:33

СЕТЕВЫЕ ТЕЛЕКОММУНИКАЦИОННЫЕ ПРОЕКТЫ КАК ФОРМА РАБОТЫ С ОДАРЕННЫМИ УЧАЩИМИСЯ ПРИ ИЗУЧЕНИИ ГЕОГРАФИИ

Учебный предмет география состоит из двух блоков. Физическая география изучает элементы природы как единое целое, формирует “образ территории”. Социально-экономическая география рассматривает развитие общества и экономики в тесной взаимосвязи с природными условиями. Для формирования и поддержания интереса к географии в Ф Т Л № 1 широко используются современные информационные технологии. Компьютерное тестирование систематически используется на уроках. Лицеисты успешно участвуют в различных телекоммуникационных олимпиадах - индивидуальных и групповых конкурсах с использованием электронной почты и сети Интернет. Такие проекты развивают умение работать с различными источниками информации, способствуют межпредметной интеграции знаний и формированию целостной картины мира. ...

01 08 2020 9:56:11

СОВРЕМЕННОЕ СОЦИАЛЬНОЕ ОБРАЗОВАНИЕ В РОССИИ

Статья в формате PDF 128 KB...

27 07 2020 16:46:16

ОБЩЕБИОЛОГИЧЕСКИЕ АСПЕКТЫ МОРФОФУНКЦИОНАЛЬНОГО СИНТЕЗА ПРИ ИЗУЧЕНИИ НЕРВНОЙ И СЕРДЕЧНО-СОСУДИСТОЙ СИСТЕМ МЛЕКОПИТАЮЩИХ

Авторами проведено комплексное исследование сосудистых и нервных структур всего органокомплекса брюшной полости, что позволило подтвердить общие морфологические закономерности, свойственные млекопитающим отряда хищных, выявить характерные видовые и внутривидовые особенности васкуляризации и иннервации у пушных зверей клеточного содержания. Полученные новые данные о морфологии сосудистых и нервных образований органов брюшной полости млекопитающих являются оригинальными и дают не только полное представление об изученных структурах, но позволяют морфофункционально интерпретировать адаптогенные процессы, протекающие в интегративно-координационных системах организма пушных зверей, находящихся под интенсивным антропогенным воздействием в процессе доместикации. ...

25 07 2020 3:18:15

ПЕРСПЕКТИВЫ ПОЛУЧЕНИЯ БЕЛКА ИЗ ПШЕНИЦЫ

Статья в формате PDF 262 KB...

23 07 2020 10:28:29

РОЛЬ ИММУНОЛОГИЧЕСКИХ НАРУШЕНИЙ В ПАТОГЕНЕЗЕ ИНФЕКЦИЙ, ПЕРЕДАВАЕМЫХ ПОЛОВЫМ ПУТЕМ

В результате проведенного исследования установлено, что одними из ведущих патогенетических факторов течения половых инфекций являются нарушения в деятельности иммунной системы. В процессе исследования выявлены изменения в клеточном иммунитете, свидетельствующие о наличии супрессии Т - клеточного звена и наличии диссиммуноглобулинемии. Выявлено, что наиболее выраженные изменения в системе клеточного и гуморального иммунитета обнаружены у больных с хроническим течением инфекционного процесса. ...

18 07 2020 2:21:50

СОСТОЯНИЕ НЕКОТОРЫХ ПОКАЗАТЕЛЕЙ ОКИСЛИТЕЛЬНОВОССТАНОВИТЕЛЬНЫХ ПРОЦЕССОВ У БОЛЬНЫХ ОСТРЫМ ХОЛЕЦИСТИТОМ И ИХ КОРРЕКЦИЯ

Под наблюдением автора было 262 больных острым холециститом. Обсуждаются вопросы адаптации больных к условиям операционного и послеоперационного периодов, которая зависит от окислительно-восстановительных процессов, обусловленных функционированием ферментативных систем, гипоксии тканей, снижения приспособительных реакций, особенно выраженных у лиц старше 50 лет. В контрольной группе (178) больных уже при поступлении в клинику намечалась тенденция к снижению Р О2 в подкожно-жировой основе, а в момент операции оно было выраженным и устойчивым, которое держалось в течение 6 дней. Так же на всем протяжении послеоперационного периода у больных наблюдалось уменьшение кислородной емкости крови, концентрации SH-групп в плазме крови, только к моменту выписки эти показатели приближались к норме. Концентрация молочной и пировиноградной кислот крови тоже было повышенным. В исследуемой группе (84) больных, которые получали в комплексном лечении во время операции и послеоперационном периоде ганглиоблокаторы и гепарин, напряжение кислорода во время операции повышалось на 68%, повышение сохранялось 2-3 дня, а к концу 5 дня р О2 было в пределах нормы. Намечалась тенденция увеличения кислородной емкости крови и SH-групп в плазме. Не смотря на то, что при поступлении лактат и пируват были выше контроля, уже в первый день после операции эти показатели были ниже контрольных. Автор делает вывод о том, что применение в комплексном лечении ганглиоблокаторов и гепарина, позволяло улучшать кислородный баланс крови и ткани и, улучшать окислительновосстановительные процессы, адаптацию организма больного к стрессовым условиям, что способствовало снижению процента послеоперационных осложнений и летальности. ...

14 07 2020 11:28:46

КУЛЬТУРОЛОГИЯ: СОЦИОДИНАМИКА КУЛЬТУРЫ

Статья в формате PDF 252 KB...

04 07 2020 19:33:47

ИНЖЕНЕР НА РЫНКЕ ТРУДА

Статья в формате PDF 242 KB...

01 07 2020 3:37:20

ОЦЕНКА МЕСТНЫХ ЗАЩИТНЫХ РЕАКЦИЙ ПРИ ПЕРИТОНИТЕ

Статья в формате PDF 111 KB...

27 06 2020 11:29:47

ФОРМИРОВАНИЕ МОТИВАЦИЙ В ПРОЦЕССЕ ОБУЧЕНИЯ К ЗДОРОВОМУ ОБРАЗУ ЖИЗНИ

В работе сформулированы принципы валеологического мировоззрения как образца устремлений, выполняющих ориентационную, нормирующую, прогностическую функции в отношении здоровья и здорового образа жизни. ...

25 06 2020 13:45:32

МОДЕЛИРОВАНИЕ ЦЕЛОСТНОГО ОБРАЗОВАТЕЛЬНОГО ПРОСТРАНСТВА

В настоящее время важно пройти сложнейший этап перехода к новому типу социально-экономического развития быстро, компетентно, опираясь на собственные творческие возможности. Именно этим целям служит разработанная нами модель педагогических основ формирования целостного образовательного пространства, основу которого составляет внедрение непрерывного образования в интегрированном профессиональном учебном заведении. Моделирование целостного образовательного пространства осуществлялось нами через уточнение таких понятий, как «интеграция», «межпредметные связи», «взаимосвязь», интегративно-педагогические закономерности, интегративная деятельность, через изучение опыта зарубежных исследователей, решающих проблемы педагогической интеграции. ...

22 06 2020 15:38:22

ВЛИЯНИЕ ТЕХНОГЕННОЙ ТРАНСФОРМАЦИИ ТАЕЖНЫХ ЛАНДШАФТОВ НА СООБЩЕСТВА МЕЛКИХ МЛЕКОПИТАЮЩИХ ЗАПАДНОЙ ЯКУТИИ

Рассматриваются показатели видового разнообразия мелких млекопитающих в зоне влияния алмазодобывающей промышленности Западной Якутии. Исследования проводились на территории двух крупных промышленных узлов – Мирнинского (среднетаежная подзона) и Айхало- Удачнинского (северотаежная подзона). Отработано около 7040 конусо-суток, 4700 ловушко-суток и отловлено 1920 экз. мелких млекопитающих, относящихся к 17 видам. Отмечено, что при масштабных преобразованиях ландшафтов, характерных для деятельности предприятий горнодобывающей промышленности, происходят изменения состава сообществ и популяционных параметров мелких млекопитающих, что свидетельствует о пессимизации среды обитания. Причем негативные трансформации более резко выражены в пределах северотаежной подзоны. ...

21 06 2020 20:33:32

ОСОБЕННОСТИ ПРОДУКЦИИ ЦИТОКИНОВ ПРИ ВИЧ-ИНФЕКЦИИ

По мере прогрессирования В И Ч-инфекции наблюдается дисбаланс в выработке цитокинов, характеризующийся переключением Тh-1 ответа на Тh-2. Это, в свою очередь, приводит к прогрессированию иммуносупрессии и развитию оппортунистических инфекций. Определено, что IFN-γ, IL-2, IL-4, IL-10 и TGFβ могут обладать разнонаправленным действием в зависимости от локальных условий. Оценка иммунологических параметров может определять прогноз развития заболевания и коpрегировать интенсивность противовирусной терапии. ...

18 06 2020 15:51:32

КОНФОРМАЦИОННАЯ ИЗОМЕРИЗАЦИЯ МЕТИЛБОРНОЙ КИСЛОТЫ

Статья в формате PDF 127 KB...

05 06 2020 7:48:34

РОЛЬ ГОСУДАРСТВА В УСЛОВИЯХ ГЛОБАЛИЗАЦИИ

Статья в формате PDF 277 KB...

26 05 2020 3:45:56

ОПЫТНО-ЭКСПЕРИМЕНТАЛЬНАЯ ДЕЯТЕЛЬНОСТЬ В РАЗВИТИИ ЕСТЕСТВЕННОНАУЧНЫХ ПОНЯТИЙ СТАРШИХ ДОШКОЛЬНИКОВ И МЛАДШИХ ШКОЛЬНИКОВ

Организация полноценного процесса познания предполагает реализацию развивающего образования и самообразования, непрерывность данного процесса на всех его ступенях. Понятие интегрирует в себе процесс и итог познания сущности предметов, явлений, включает рефлексивные процессы мышления, обеспечивая их необратимость, свернутость, системность. Эмоциональное отношение ребенка к изучаемому материалу создает в мышлении своеобразную доминанту, поддерживающую любознательность и интерес. Основная особенность опытно-экспериментальной деятельности состоит в наличии возможности управлять ходом изучения явления, здесь ребенок проявляет собственную активность и творчество в процессе получения новых знаний. Опытно-экспериментальную деятельность по развитию естественнонаучных понятий необходимо строить в соответствии с четырьмя этапами диалектического познания: основание - ядро - следствие – общие критические истолкования, а также с учетом обобщенного плана проведения опыта: цель - схема - ход - результат. Методика организации опытно-экспериментальной деятельности по развитию естественнонаучных понятий дошкольников и младших школьников раскрыта нами на примере понятия «свет». Развитие естественнонаучных понятий дошкольников и младших школьников эффективно в условиях личностно-ориентированного образования, обращенного к чувствам, индивидуально неповторимому миру человека. ...

20 05 2020 15:50:28

К ВОПРОСУ ОБ АНОМАЛЬНЫХ СВОЙСТВАХ ТАЛОЙ ВОДЫ (ЧАСТЬ 1)

Статья в формате PDF 128 KB...

12 05 2020 20:54:41

СУБТРОПИЧЕСКИЕ РАСТЕНИЯ ФЛОРЫ КАВКАЗА

Статья в формате PDF 121 KB...

10 05 2020 12:28:21

ТИПОГРАФИКА (учебное пособие)

Статья в формате PDF 116 KB...

04 05 2020 23:13:51

ОБ ОДНОЙ МОДЕЛИ РАВНОВЕСИЯ

Статья в формате PDF 137 KB...

02 05 2020 19:54:54

Еще:
Обзоры -1 :: Обзоры -2 :: Обзоры -3 :: Обзоры -4 :: Обзоры -5 :: Обзоры -6 :: Обзоры -7 :: Обзоры -8 :: Обзоры -9 :: Обзоры -10 :: Обзоры -11 ::

Последовательность подготовки научной работы может быть такой:

Выбор темы. Это важный этап. Во-первых, тема должна быть интересна не только вам, но и большинству слушателей, которым вы будете её докладывать, чтобы вы видели заинтересованность в их глазах, а не откровенную скуку.

Выбор целей и задач своей научной работы. То есть, нужно сузить тему. Например, тема: «Грудное вскармливание», сужение темы: «Грудное вскармливание среди студенток нашего ВУЗа». И если общая тема мало кому интересна, то суженная до рамок собственного института или университета, она становится интересной практически для всех слушателей. Целью может стать: «Содействие оптимальным условиям вскармливания грудью детей студентов нашего ВУЗа», а задачей — доказать, что специальные условия, созданные для кормящих студенток, не помешают их успеваемости, но уменьшат количество пропусков, академических отпусков и способствуют выращиванию здоровых детей — нашего будущего. Понятно, что эта тема подходит для студентов медицинских и педагогических ВУЗов, но и в других учебных учреждениях можно найти темы, интересные всем.

Разработать методы исследования и сбора информации. В случае с естественным вскармливанием, скорее всего, это будет анкетирование студенток, имеющих детей.

Систематизировать материал и подготовить презентацию.

Подготовиться к выступлению.

Выступить и получить: награду, удовольствие и опыт, чтобы в следующем году выступить ещё лучше и сорвать шквал аплодисментов, стать узнаваемым, а значит — более конкурентоспособным!