ПРОБЛЕМЫ ПОДГОТОВКИ УЧИТЕЛЕЙ НАЧАЛЬНЫХ КЛАССОВ К ОБУЧЕНИЮ МАТЕМАТИКЕ В СИСТЕМЕ ПЕДАГОГИЧЕСКОГО ОБРАЗОВАНИЯ СОВРЕМЕННОЙ РОССИИ > Научные обзоры
IT-Reviews    

ПРОБЛЕМЫ ПОДГОТОВКИ УЧИТЕЛЕЙ НАЧАЛЬНЫХ КЛАССОВ К ОБУЧЕНИЮ МАТЕМАТИКЕ В СИСТЕМЕ ПЕДАГОГИЧЕСКОГО ОБРАЗОВАНИЯ СОВРЕМЕННОЙ РОССИИ

Источник:
Царева С.Е. Статья в формате PDF 173 KB

Подготовка учителя начальных классов в России, как известно, в целом и, в частности к обучению учащихся математике осуществляется в педагогических колледжах и педагогических вузах по Государственным образовательным стандартам 2005 года для высшего образования и 2002 года для среднего педагогического образования как по программам специалитета, так и по программам бакалавриата. С 2011 года предполагается переход на стандарты третьего поколения - на Федеральные государственные образовательные стандарты высшего образования. Одна из важных и нерешенных проблем подготовки будущего учителя к обучению детей математике - это проблема обеспечения готовности будущего учителя к согласованию математической грамотности такого обучения с возрастными возможностями детей, с их субъектным опытом - опытом дошкольного и внешкольного познания мира. Без такого согласования истинное содержание математического знания, выраженное как в грамотном математическом тексте, так и безграмотном, будет недоступно детям.

В традиции российского педагогического образования осуществлять рассматриваемую подготовку через курса - «Математика» и Методика преподавания математики» (или в педагогическом колледже «Теоретические основы начального курса математики» и «Методика преподавания математики». Названные дисциплины могут быть представлены отдельными курсами, а могут быть интегрированы в один или два курса. Именно объединение названных курсов, интеграция математической и методической подготовки студентов могут служить одним из важнейших средств решения названной выше проблемы.

Курс математики начальной школы является вводным интегрированным курсом, формирующим общие представления учащихся о математике, об особенностях математического знания и математического языка. Его содержание, педагогические, методические позиции учителя определяют в целом отношение учащихся к математике. Одна из основных задач этого курса - обеспечить понимание учащимися математических понятий, действий, правил, символов как способов обозначения, хранения и передачи собственного и чужого опыта и знания, как средств, которые наряду с естественным языком и языками других областей знания делают более эффективным общение и познание мира. Математика должна выступить перед детьми как инструментов познания, дополняющих и расширяющих возможности познания мира, себя в мире.

Для обеспечения соответствующей готовности студентов будущих учителей начальных классов математические знания студента должны быть поняты и освоены с позиций методологических знаний о сущности математики и математических методов и способов познания, под углом зрения психологических особенностей становления и развития у младших школьников математических представлений, математических средств познания мира и математических способов действий, с позиций современных эффективных педагогических парадигм. Выполнение этого требования по отношению к любому, изучаемому студентами математическому вопросу, выводит нас на проблему представления этого вопроса в обучении математике, т.е. на вопросы методики обучения, на проектирование путей реализации целей и задач изучения математики в начальной школе. Поддержку этой позиции мы находим в работах великого математика Анри Пуанкаре (1854-1912). Вот одно из многих таких соображений А. Пуанкаре об обучении математике: «Что разумеют под хорошим определением? Для философа или для ученого это есть определение, которое приложимо ко всем определяемым предметам и только к ним; такое определение удовлетворяет правилам логики. Но при преподавании дело обстоит иначе. Здесь хорошим определением будет то, которое понято учениками. ... определения, наиболее понятные для одних людей, не будут совпадать с определениями, которые подходят для других» [2, С. 455, 457-458]. Изучение вопросов методики обучения математике не будет эффективным, если при этом не обращаться к содержанию изучаемого. Необходимость такого обращения также подчеркивал А. Пуанкаре: «Размышлять о том, каким образом внедрить новые математические понятия в девственный ум ребенка, - значит, в то же время размышлять о том, каким образом эти понятия были приобретены нашими предками; значит, следовательно, размышлять об их истинном происхождении, а это, по существу, значит размышлять об истинной их природе» [2, c. 370.]. Такое размышление осуществимо лишь при возможности обратиться к содержанию понятий, способам выражения в языке, отношениям и способам действий с соответствующими математическими объектами, т. е. при возможности непосредственного обращения к математике, что в интегрированном курсе сделать легче.

В интегрированном курсе методические подходы легко конструируются и обосновываются как с позиций психологии и педагогики, так и с позиций сущности математического знания, логики содержательных связей между математическими понятиями, что особенно важно для учителя начальной школы. В изолированных курсах математики и методики создать условия для этого труднее. Одна из причин этой трудности - временнáя разорванность рассмотрения соответствующих вопросов. Ее нельзя полностью устранить, даже если в учебных планах эти курсы будут идти параллельно и их будет вести один преподаватель.

Изучение математики в интегрированном курсе идет более осмысленно, мотивированно. Любой вопрос математики обязательно проецируется на психологические особенности студентов и учащихся начальной школы, на педагогические, методические проблемы, вопросы и положения, а методический вопрос - на математические. Математика помогает освоению методики, а методика - освоению математики. У преподавателя появляются возможности строить изучение в соответствии с особенностями обучающихся: студентов и учащихся начальной школы.

Это не означает, что интегрированный курс лишен трудностей. Такие трудности есть. Основная из них - необходимость любое математическое понятие и утверждение пропускать через призму причин происхождения, вариантов выражения в языке, через призму детского сознания. Великий математик ХХ века Г. Вейль [1] утверждал, что наибольших успехов в математике можно достичь при условии чередования работы внутри математики и работы «над математикой», в сфере философского осмысления природы математического знания. Он считал, что работая только внутри, мы неизбежно потеряем ориентиры направления движения и уже не будем знать, зачем и куда мы движемся в математических действиях, понятиях, утверждениях. Если же мы будем находиться только в слое «над математикой», то в конце концов потеряем предмет разговора и наши суждения будут суждениями ни о чем. Эти трудности могут быть у преподавателей, которые имеют большой «стаж» изолированного ведения объединенных нами учебных дисциплин. Первое время трудности есть у части студентов, школьный опыт которых сформировал у них взгляд на математику как на некоторый свод формальных однозначных правил и утверждений, выработал репродуктивный тип учебной деятельности, тогда как при изучении интегрированного курса в большей мере, чем при изучении раздельном, требуется деятельность продуктивная.

Список литературы

  1. Вейль Г. Математическое мышление. М., 1989.
  2. Пуанкаре А. О науке. Пер. с фр. /Под ред. Л.С. Понтрягина. М., 1990.



Отзывы (через Facebook):

Оставить отзыв с помощью аккаунта FaceBook:


РЕЗУЛЬТАТЫ ФАРМАКОЛОГИЧЕСКОГО ИССЛЕДОВАНИЯ НОВОГО СИНТЕТИЧЕСКОГО БИОЛОГИЧЕСКИ АКТИВНОГО ВЕЩЕСТВА «4-АММОНИЙ ПИРИДИН ТЕТРАХЛОРПАЛЛАДИТ»

Химиотерапевтические средства в комплексе с хирургическими операциями широко используются для лечения онкологических больных. Несмотря на то, что арсенал этих препаратов широко представлен, все эти препараты обладают высокой токсичностью. Результаты цитогенетических исследований, проводимых на семенах пшеницы безостая – 1 показали, что 0,01; 0,02 и 0,05 % растворы исследуемого вещества не обладают цитотоксичностью, и лишь в разведении 0,1 % обнаруживает слабое цитотоксическое действие. Методом биотеста было выявлено, что при внутрибрюшинном введении белым мышам 1 мл раствора 4-аммоний пиридин тетрахлорпалладита исследуемое вещество обнаруживает высокую токсичность, которая усиливается со времени, начиная с момента введения, и зависит от концентрации введенного раствора. ...

21 07 2021 1:26:18

К ВОПРОСУ О КОРРЕЛЯЦИОННЫХ СВЯЗЯХ МЕЖДУ ЭЛЕМЕНТАМИ В РАСТИТЕЛЬНОСТИ

В листьях древесных пород и травянистой растительности определены корреляционные зависимости между Mn, Cr, Ni, Cu, Ti, Pb, Zn, Co в условиях геохимического фона и на колчеданных месторождениях. ...

14 07 2021 2:50:32

АКТУАЛЬНЫЕ ПРОБЛЕМЫ ОСВОЕНИЯ ЦЕНТРАЛЬНОГО КАВКАЗА

Статья в формате PDF 91 KB...

13 07 2021 0:40:29

ПРЕДСТАВЛЕНИЕ ФУНКЦИИ РАЗЛИЧНЫМИ РЯДАМИ ФУРЬЕ

Статья в формате PDF 648 KB...

08 07 2021 22:15:59

ИЗУЧЕНИЕ ХИМИЧЕСКОГО СОСТАВА И СПЕКТРОФОТОМЕТРИЧЕСКОЕ ОПРЕДЕЛЕНИЕ АМИНОКИСЛОТ В ТРАВЕ ОВСА ПОСЕВНОГО

Изучен химический состав травы овса посевного. Качественными реакциями обнаружены аминокислоты, крахмал и флавоноиды. Разработана методика спекторофотометрического определения суммы аминокислот по реакции с нингидрином. Установлено, что в траве овса содержится до 1% аминокислот в пересчете на кислоту глютаминовую. ...

28 06 2021 10:55:17

ПРЕПОДАВАНИЕ ЭКОЛОГИИ В ТЕХНИЧЕСКОМ УНИВЕРСИТЕТЕ

Статья в формате PDF 110 KB...

22 06 2021 16:14:13

ПРИМЕНЕНИЕ ПАКЕТА MATHСAD ПРИ ОБУЧЕНИИ СТОХАСТИКЕ

Статья в формате PDF 120 KB...

21 06 2021 9:39:52

ОПЫТ НЕМЕДИКАМЕНТОЗНОЙ ТЕРАПИИ САХАРНОГО ДИАБЕТА

Статья в формате PDF 91 KB...

20 06 2021 23:10:18

АЛЕКСЕЕВ ВЛАДИМИР НИКОЛАЕВИЧ

Статья в формате PDF 338 KB...

06 06 2021 9:31:22

Еще:
Обзоры -1 :: Обзоры -2 :: Обзоры -3 :: Обзоры -4 :: Обзоры -5 :: Обзоры -6 :: Обзоры -7 :: Обзоры -8 :: Обзоры -9 :: Обзоры -10 :: Обзоры -11 ::

Последовательность подготовки научной работы может быть такой:

Выбор темы. Это важный этап. Во-первых, тема должна быть интересна не только вам, но и большинству слушателей, которым вы будете её докладывать, чтобы вы видели заинтересованность в их глазах, а не откровенную скуку.

Выбор целей и задач своей научной работы. То есть, нужно сузить тему. Например, тема: «Грудное вскармливание», сужение темы: «Грудное вскармливание среди студенток нашего ВУЗа». И если общая тема мало кому интересна, то суженная до рамок собственного института или университета, она становится интересной практически для всех слушателей. Целью может стать: «Содействие оптимальным условиям вскармливания грудью детей студентов нашего ВУЗа», а задачей — доказать, что специальные условия, созданные для кормящих студенток, не помешают их успеваемости, но уменьшат количество пропусков, академических отпусков и способствуют выращиванию здоровых детей — нашего будущего. Понятно, что эта тема подходит для студентов медицинских и педагогических ВУЗов, но и в других учебных учреждениях можно найти темы, интересные всем.

Разработать методы исследования и сбора информации. В случае с естественным вскармливанием, скорее всего, это будет анкетирование студенток, имеющих детей.

Систематизировать материал и подготовить презентацию.

Подготовиться к выступлению.

Выступить и получить: награду, удовольствие и опыт, чтобы в следующем году выступить ещё лучше и сорвать шквал аплодисментов, стать узнаваемым, а значит — более конкурентоспособным!