IT-Reviews    

ИНЖЕНЕРНЫЕ НАУКИ НА РУБЕЖЕ ВЕКОВ: СИНТЕЗ И МУЛЬТИДИСЦИПЛИНАРНОСТЬ

Крупенин В.Л. Статья в формате PDF 94 KB

Не так давно исполнилось триста лет со дня появления на свет великого труда основателя современной физики Исаака Ньютона «Математические начала натуральной философии». Обобщая труды своих великих предшественников, равно как, разумеется, и свои собственные, Ньютон возвел фундамент под той областью человеческого знания, которая ныне именуется физикой. Правда, в те времена физика в основном и состояла из этого фундамента - механики. Но затем пришли великие открытия, на которые и опираются современные знания о Природе. Среди этих знаний, возможно, как-то затушевалось представление о том, что слово «механика», в переводе с древнегреческого собственно и означает «искусство построения машин». То есть механика первоначально была фундаментом инженерного дела, а потом физики. Гений Ньютона дал возможность взглянуть на науку 17-го века с единых позиций. Затем началось Великое Разобщение: разделы физики создавались, «становились на ноги» и, казалось, начинали жить своей самостоятельной жизнью, однако, теперь видно: пришло «время собирать камни». Инженерные науки впитали в себя огромную часть, казалось бы, ставших далекими друг от друга разделов физики и именно они активно участвуют в осуществлении синтеза знаний, определяя единство науки, по крайней мере, в ее прикладной области и в реальном производстве. Рассмотрим подробнее некоторые конкретные проблемы, стоящие перед современными инженерами.

Проблема «рассчитать». Символами инженерного труда еще недавно представлялись штангенциркуль и логарифмическая линейка. Штангенциркуль - для измерений, логарифмическая линейка - для расчетов. Расчет и измерение - основа основ техники. Что же такое расчет в современном понимании? Технические объекты, окружающие нас повсюду, - машины, механизмы, разнообразные устройства, аппараты, приборы, приспособления, как правило, достаточно сложны. При их создании конструктор опирается в первую очередь на свой опыт и инженерную интуицию, которая не всегда надежна.

Сегодня основные требования к любой машине - высокие эффективность, производительность, быстродействие, надежность и экономичность. Все эти требования легко сформулировать на словах, но не так легко воплотить «в железе». Современное инженерное дело позволяет синтезировать математические модели технических объектов, а значит, дает возможность заранее установить их свойства, представить себе их достоинства или возможные недостатки, узнать, как настраивать машину в режим максимальной эффективности. Раньше требовалось, например, ответить на вопросы: каковы прочностные качества данной конструкции или узла, какими должны быть параметры механизмов, реализующих заданный тип движения, и т. п., «расчленяющие» единое восприятие сложной системы и часто «вместе с водой выплескивающие и ребенка».

Сегодня техника имеет дело с огромными скоростями и нагрузками. Инженеры стремятся заставить машины работать в форсированных режимах, и это обстоятельство предъявляет к расчетам иные требования. При проектировании машина должна рассматриваться как единая динамическая система «привод (источник энергии) - система управления - исполнительные устройства - внешняя (обрабатываемая) среда». О физически обоснованных принципах организации машин можно говорить, только когда инженер будет знать все параметры этой сложной системы и здесь «задействуется» и классическая, и современная физика, а также некоторые частные «ответвления». Такой подход довольно далеко уводит «механику» от «истоков», но именно так устроен мир!

Требования, которым должны удовлетворять математические модели, сложны и выглядят на первый взгляд достаточно противоречиво. С одной стороны, они должны быть высокоинформативными, т.е. содержать сведения о всех основных подсистемах объекта. С другой - позволять получить результаты достаточно легко интерпретируемые на «технический язык »: модели, «перегруженные» избыточной информацией, могут оказаться столь же бесполезными, сколь и «недогруженные». Однако никакого противоречия здесь нет. Процесс построения математических моделей технических систем базируется на достаточно простых и целесообразных принципах. Владеть ими должен каждый грамотный инженер.

Фундаментальные исследования последних лет дают рекомендации, как по проведению математического моделирования, так и по анализу построенных моделей. Как правило, математические модели выражаются при помощи дифференциальных уравнений и, возможно, каких-либо дополнительных соотношений. Поэтому проблема «рассчитать» часто сводится к необходимости разыскать их решения.

Дифференциальные уравнения, описывающие реальные динамические процессы, по большей части нелинейны. Это означает, что получить искомые точные решения в большинстве случаев - невозможно. Приходится довольствоваться приближенными решениями, которые удовлетворяют исходному дифференциальному уравнению с некоторой погрешностью.

Однако все равно, компьютер ли выступает в роли расчетчика или человек, в любом случае нужны алгоритмы расчета. Эффективные средства анализа математических моделей - так называемые асимптотические методы нелинейной механики, предложены в тридцатые годы Н.М. Крыловым и Н.Н. Боголюбовым. А еще ранее сходными по существу идеями пользовался при выполнении многочисленных практических расчетов знаменитый голландский ученый Б. Ван-дер-Поль, популяризации работ которого в немалой степени способствовали труды основателя советской школы теории колебаний и многих отраслей физики Л.И. Мандельштама и его ученика Н.Д. Папалекси.

Как правило, большинство динамических процессов можно разделить на две составляющие - медленную эволюционную и малую осцилляционную («колебательную»). Медленная составляющая отвечает за общий вид процесса и определяет его основные качества. Поэтому целесообразно пренебречь малыми «колебательными» добавками, наложенными на медленно изменяющуюся эволюционную составляющую и описывать динамику исследуемой системы только при ее помощи. Эта идея реализуется при посредстве асимптотических методов. Получаемые таким образом решения, разумеется, не точны, а приближенны. Однако в них нет избыточной информации, - они в ряде случаев более полезны в инженерной практике, чем точные. Это несколько парадоксальное обстоятельство объясняется достаточно просто. Никакая математическая модель не может «подходить» к реальному объекту идеально, так сказать, «на все сто». На практике часто оказывается, что, жертвуя излишней точностью, мы избавляемся не от ценной информации о состоянии объекта, а от его малых несоответствий математической модели.

Асимптотические методы дают возможность получить представления, позволяющие описывать (если в этом есть необходимость) и малые отбрасываемые вначале осцилляции. Надо сказать, что к таким описаниям механики прибегают довольно редко. В большем числе случаев необходимая информация «извлекается» из модели и без того.

Асимптотические и другие приближенные методы нелинейной механики появились, естественно, не на «ровном месте». Идеи, связанные с применением приближенных расчетов, в той или иной форме использовались ранее К.Ф. Гауссом, М.В. Остроградским и многими другими классиками естествознания. Не пренебрегал ими и сам И. Ньютон, который, рассчитывая величину затухания малых колебаний маятника при произвольном законе сопротивления среды, получил соотношение, всецело совпадающее с тем, что дают ныне асимптотические методы.

Приближенные расчетные методы - прекрасный пример того, как на первый взгляд как абстрактные идеи («здание» асимптотических методов базируется на ряде весьма нетривиальных математических фактов) при надлежащей интерпретации могут использоваться практиками. Список практически значимых задач, решенных при помощи приближенных методов, огромен. Это и расчеты в области небесной механики (определение параметров движения небесных тел и космических аппаратов), и задачи современного материаловедения композиционных материалов (определение эффективных характеристик композитов, прогнозирование их свойств наноматериалов и др.). Здесь и решение многих важных проблем теории управления машинами (промышленными роботами, различными технологическими установками и многими другими), и расчеты разнообразных электронных, например, СВЧ устройств.

Методы нелинейной механики помогли прочно «встать на ноги» теории колебаний - науке с множеством прикладных разделов, изучающей систематически повторяющиеся динамические процессы в машинах и механизмах, Мировом океане, плазме, радиоэлектронных устройствах, биологических системах и т.д.

Одно из важнейших прикладных направлений теории механических колебаний - вибротехника. Ее дело, в частности, расчет и настройка вибрационных технологических машин. В качестве вычислительного аппарата она активно «эксплуатирует» асимптотические и другие приближенные методы расчета. Вот пример одной важной проблемы, успешно решаемой при их помощи.

Вполне естественно желание «заставить» вибромашины работать максимально эффективно и производительно. Успех в решении этой задачи зависит от наличия еще на стадии проектирования информации о возможных резонансных свойствах машины. Дело в том, что резонанс и есть то состояние, когда при минимуме затрат получают максимальный технологический эффект. Вот здесь-то поистине незаменимы физически ясные и легко интерпретируемые на «технический язык» рабочие формулы, полученные приближенными методами нелинейной механики. Инженер, исходя из условий поставленной задачи, четко видит динамические особенности используемых им процессов, наилучшим образом выбирает параметры конструкций, с максимальной полезностью распоряжается энергией привода, словом, создает действительно динамически целесообразную машину.

Нельзя также не отметить, что в последние годы интенсивно развивается так называемая физическая мезомеханика материалов, объединяющая основные методы и принципы физики пластичности и разрушения с механикой деформируемого твердого тела. Мезомеханика оказалась тесно связанной с механизмами нанотехнологий. Это весьма интересная и перспективная область знания.

Эксперимент в инженерном деле. То, что физики делятся на теоретиков и экспериментаторов - общеизвестно. Инженеров же практически всегда представляют только производственниками и об инженерных экспериментах знают мало. У экспериментаторов, разумеется, есть свои преимущества. Как известно, ни один из экспериментов не может подтвердить теорию (но может находиться с нею в удовлетворительном согласии); в то же время единственного эксперимента может оказаться достаточно, чтобы теория пала. Однако, казалось бы, что принципиально нового можно обнаружить в природе инженерного дела? Законы, на которых оно построено, как правило, устанавливаются еще на стадии чисто научных исследований, они, естественно, подтверждены экспериментально; определены границы их применимости. Чего же еще? Оказывается, проблем осталось много. Возьмем, например, динамику твердого деформируемого тела. Она интересуется движением (или, в частности, равновесием) разнообразных твердых тел, возникающим в результате внешних воздействий различной природы и «выходит на сцену» тогда, когда модели и представления, связанные с абсолютно твердым телом, не применимы, так что пренебрегать деформациями нельзя. (Несмотря на то что абсолютно твердых тел не бывает, инженеры и механики часто прибегают к этой идеализации и, надо сказать, с успехом.)

Поведение деформируемых тел может оказаться довольно сложным и определяться множеством причин. Под действием внешних силовых и кинематических возмущающих факторов в телах возникают определенные распределения напряжений, деформаций, скоростей частиц, а также магнитных, электрических и температурных полей. «Увязка» этих многочисленных характеристик по вполне понятным причинам чрезвычайно важна при создании машин и других технических объектов.

Модели механики твердого деформируемого тела состоят из трех групп соотношений. Вначале идут уравнения движения (или, в частности, равновесия). Эти уравнения - основа основ механики - базируются на общих для всех систем фактах и в экспериментальном обосновании не нуждаются. Далее идут геометрические уравнения совместности деформаций. Их достаточно легко сформировать чисто умозрительно. Наконец, третья группа несет информацию об «инженерных» свойствах материала, устанавливает соотношения между напряжениями и деформациями - это так называемые физические или определяющие уравнения.

Определяющие соотношения - «сердце любой» модели механики деформируемого тела. Но здесь не обойтись без эксперимента, который установит необходимые для моделирования свойства материала. Простейшее определяющее соотношение - всем известный линейный закон Гука. Если установлено, что материал, из которого изготовлен некоторый образец, при данных внешних условиях подчиняется закону Гука и, кроме того, найдены конкретные значения некоторых физических констант, то появляется возможность полностью описать поведение образца. Однако такое предположение может и не подтвердиться экспериментально: известно большое число «негуковских» материалов и внешних условий, при которых линейный закон Гука не выполняется. В этом случае необходимо установить новые физические соотношения и результаты описания, естественно, качественно изменятся. Нахождением определяющих уравнений занимались всегда. Но особенно остро эта проблема встает в наши дни. Материалам приходится «работать» в экстремальных условиях, в присутствии сильных внешних полей - не знать их свойств значит не иметь эффективной техники. Кроме того, материаловеды «открывают» новые полимерные и композитные материалы чуть ли не ежедневно, что позволяет приблизиться к решению совершенно фантастической проблемы - каждой детали подобрать материал, соответствующий ее назначению наилучшим образом. Однако полимеры и композиты подчиняются закону Гука довольно редко, поэтому экспериментирование с ними особенно интересно и важно.

Перед экспериментаторами в инженерном деле стоят и многие другие задачи. Одна из них -
регистрация физико-технических эффектов. Эффект - это не физический закон, а некое частное проявление законов на конкретном классе объектов. Знание физико-технических эффектов чрезвычайно важно для техники и технологий. Их используют изобретатели, они лежат в основе рекомендаций по конструированию машин, приборов и аппаратуры.

Колебательные, вибрационные процессы встречаются практически в любой машине. Иногда их используют в качестве рабочих процессов или осуществляют рабочие процессы с их помощью. Но иногда они ведут машину к преждевременной гибели - это связано с так называемым виброизносом. Знать причины, вследствие которых возникает виброизнос, и уметь их устранять - значит существенно продлить жизнь техническим средствам. Знать условия возникновения интенсивных вибрационных процессов и уметь их реализовывать - значит существенно повысить эффективность многих технологических процессов.

Про механические эффекты, сопровождающие вибрационные процессы, можно говорить много и долго. Оказывается, что если поместить некоторые конструкции в сильные вибрационные поля, то они моментально могут просто «рассыпаться». Оказывается, что при некоторых условиях эти же поля, напротив, способны превратить неустойчивую систему в устойчивую. Оказывается, что если подвергнуть интенсивной вибрации сыпучую среду (порошок, грунт, зерно и т.п.), то в ней возникает интенсивное движение частиц с перемешиванием, напоминающее кипение. Оказывается, что если заставить вибрирующую струну соударяться с неподвижной стенкой, то стоячая волна синусоидальной формы мгновенно трансформируется в трапециевидную. В общем, эффектов много.

Возможности современной измерительной и анализирующей аппаратуры позволяют предложить специальные методы построения математической модели по результатам натурных измерений. Речь идет не об определении каких-либо неизвестных параметров системы, а именно о самой модели в целом. Иными словами, появляется возможность как бы «измерить уравнения движения». Это высказывание, разумеется, чудовищно некорректно: уравнения нельзя измерять. Но можно экспериментально определить некоторые характеристики (их называют динамическими податливостями), которые вполне заменят уравнения и которые в инженерном смысле даже более информативны. Знание реальных динамических податливостей и еще некоторых экспериментально определяемых характеристик позволяет существенно ослабить роль «умозрительного фактора» при математическом моделировании. В то же время используются его основные преимущества, например, возможность прогнозировать поведение реальных конструкций. Дело это непростое. И пока здесь наметились лишь первые, хотя и обнадеживающие, результаты. Однако если исследования в этой области будут успешно развиваться, то смогут стать на научные рельсы весьма важные работы в области диагностики машин.

Дальше. Фантазировать о том, каким станет инженерное дело в будущем,- занятие неблагодарное. Еще недавно физики «бредили» высокотемпературной сверхпроводимостью и, казалось, ее получение - дело далекого будущего, а ныне эта мечта уже «материализовалась». Вполне естественно, что в будущем будут развиваться и традиционные отрасли инженерного дела, и те его разделы, контуры которых еще только проявляются. Наверняка возникнут и многие новые направления. В начавшемся веке техника освободится от ряда феноменологических представлений, в связи с чем получат существенно более глубокое, нежели теперь, физическое осмысление такие важнейшие явления, как удар, турбулентность, пластичность, текучесть, разрушение, рассеяние энергии за счет внутренних несовершенств материалов, нелинейные волны и многие другие.

Однако, как бы ни эволюционировали техника и технологии центральной фигурой процесса, останется образованный инженер. То есть человек, знающий и понимающий современную науку и осознающий, что наука - есть мощный инструмент, позволяющий создавать технические системы, «умеющие» беречь природу, экономить энергию и ресурсы, создавать новые материалы с заранее заданными свойствами и, наконец, рассчитывать эти системы с возможно большей полнотой и полезностью.




Отзывы (через Facebook):

Оставить отзыв с помощью аккаунта FaceBook:

Изучение эффективности галавтилина у больных рожей

Статья в формате PDF 115 KB...

17 10 2019 7:16:24

МОДЕЛИРОВАНИЕ ЦЕЛОСТНОГО ОБРАЗОВАТЕЛЬНОГО ПРОСТРАНСТВА

В настоящее время важно пройти сложнейший этап перехода к новому типу социально-экономического развития быстро, компетентно, опираясь на собственные творческие возможности. Именно этим целям служит разработанная нами модель педагогических основ формирования целостного образовательного пространства, основу которого составляет внедрение непрерывного образования в интегрированном профессиональном учебном заведении. Моделирование целостного образовательного пространства осуществлялось нами через уточнение таких понятий, как «интеграция», «межпредметные связи», «взаимосвязь», интегративно-педагогические закономерности, интегративная деятельность, через изучение опыта зарубежных исследователей, решающих проблемы педагогической интеграции. ...

02 10 2019 8:44:16

АНАЛИЗ АССОЦИАЦИЙ ПО СОЧЕТАНИЯМ ГЕНОТИПОВ ПОЛИМОРФНЫХ ДНК – ЛОКУСОВ (TAG 1A И NCOI) DRD2, 256A/G ГЕНА SLC6A3 И ОБЪЕМНЫХ ХАРАКТЕРИСТИК МИНДАЛЕВИДНОГО КОМПЛЕКСА МОЗГА С ПОВЫШЕННОЙ ТРЕВОЖНОСТЬЮ

Впервые показано, что у крыс с генотипом А2/ А2 по локусу TAG 1A DRD2 с повышенной тревожностью имеет место сочетание генотипов N2N2 локуса NcoI DRD2 и А А локуса 256A/G гена SLC6A3, а также увеличение объемных характеристик базолатеральной группировки миндалевидного комплекса мозга. ...

28 09 2019 14:40:37

ПРАКТИКУМ ПО ТАКСАЦИИ

Статья в формате PDF 125 KB...

26 09 2019 1:36:56

Молекулы средней массы плазмы крови при сифилисе

Статья в формате PDF 106 KB...

19 09 2019 22:29:56

РОЛЬ ОКИСЛИТЕЛЬНОГО СТРЕССА В ПАТОГЕНЕЗЕ ХРОНИЧЕСКОЙ ОБСТРУКТИВНОЙ БОЛЕЗНИ ЛЕГКИХ

В миниобзоре приведены современные тренды изучения роли окислительного стресса в патогенезе хронической обструктивной болезни легких ( Х О Б Л). Показано, что развитие окислительного стресса происходит синхронно с дисбалансом в системе протеазы/антипротеазы и взаимосвязано с нарушением обмена железа. Приведены данные, демонстрирующие нарушение регуляции антиоксидантной защиты при Х О Б Л. Показана взаимосвязь между развитием окислительного стресса и воспалением. Обсуждается гипотеза о взаимосвязи окислительного стресса, хронического воспаления и старения в механизме патогенеза Х О Б Л. ...

17 09 2019 6:36:56

СОВРЕМЕННЫЕ ПРОБЛЕМЫ ДИДАКТИКИ ВЫСШЕЙ ШКОЛЫ

Статья в формате PDF 164 KB...

11 09 2019 18:38:57

Приметы как формы национальной культуры

Статья в формате PDF 249 KB...

09 09 2019 22:41:12

Краснощекова Галина Алексеевна

Статья в формате PDF 177 KB...

06 09 2019 5:58:54

ХАШАЕВ ЗАУР ХАДЖИ-МУРАДОВИЧ

Статья в формате PDF 113 KB...

29 08 2019 19:31:16

ПОВЫШЕНИЕ ИНТЕРЕСА К МУСУЛЬМАНСКОЙ КУЛЬТУРЕ КАК РЕАКЦИЯ НА ГЛОБАЛИЗАЦИОННЫЕ ПРОЦЕССЫ

В статье показано увеличение интереса граждан России к истории и культуре стран ислама. Это связано с повышением политической активности этих стран и расширением их туристического сервиза. ...

27 08 2019 15:13:16

COMPUTERIZED FORECASTING MYOCARDIAL INFARCTION AND INSULT

Статья в формате PDF 119 KB...

24 08 2019 23:31:45

ИКСОДОВЫЕ КЛЕЩИ И ЖИВОТНОВОДСТВО КУЗБАССА

Статья в формате PDF 117 KB...

23 08 2019 11:15:26

СОВРЕМЕННЫЕ ПРЕДСТАВЛЕНИЯ О ВОЗМОЖНЫХ МЕХАНИЗМАХ СРЫВА ИММУНОЛОГИЧЕСКОЙ ТОЛЕРАНТНОСТИ МАТЕРИ ПО ОТНОШЕНИЮ К АНТИГЕНАМ ПЛОДА КАК ВЕДУЩЕГО ФАКТОРА ИММУНОАЛЛЕРГИЧЕСКОГО ПРОИСХОЖДЕНИЯ ГЕСТОЗА. СООБЩЕНИЕ 2. О РОЛИ НАРУШЕНИЯ ПРОДУКЦИИ ПЛАЦЕНТОЙ ИММУНОСУПРЕССИР

В обзоре изложены современные представления об этиологии и патогенезе гестоза. Показано значение как генетически детерминированного, так и обусловленного развитием воспалительного процесса гениталий повышения проницаемости маточно-плацентарного барьера для антигенов плода. Рассмотрена роль иммунокомплексной патологии как пускового механизма в развитии гестоза, значение нарушения продукции плацентой белков беременности и цитокинов с иммуносупрессивным действием при осложненном течении беременности. ...

17 08 2019 9:50:24

НОВЫЙ ПОДХОД К ОЦЕНКЕ УЩЕРБА ВОДНЫМ РЕСУРСАМ

Статья в формате PDF 146 KB...

15 08 2019 13:10:41

РОЛЬ ГОСУДАРСТВА В УСЛОВИЯХ ГЛОБАЛИЗАЦИИ

Статья в формате PDF 277 KB...

14 08 2019 3:36:32

ЗДОРОВЬЕ ДЕТЕЙ ЛИЦ, ПЕРЕБОЛЕВШИХ ХЛОРАКНЕ

Статья в формате PDF 109 KB...

05 08 2019 8:11:58

ДИФФЕРЕНЦИРОВАННЫЙ ПОДХОД К ЛЕЧЕНИЮ УРАТНОГО НЕФРОЛИТИАЗА У БОЛЬНЫХ РАЗЛИЧНОГО ВОЗРАСТА

Географическое расположение и климатические условия Нижнего Поволжья, неудовлетворительная экологическая обстановка способствует росту заболеваемости мочеполовой системы у населения, проживающего в регионе. Увеличение частоты заболеваемости уратным нефролитиазом диктует необходимость поиска адекватного объема терапии по улучшению качества консервативного лечения этой патологии. Изучение особенностей симптомокомплекса уратного нефролитиаза в разных возрастных группах (25-30; 40-45; 60-70 лет) позволило научно обосновать и разработать практические рекомендации по рациональному и эффективному лечению данного вида мочекаменной болезни у пациентов с учетом их возраста. ...

03 08 2019 18:55:55

ЛИЧНОСТНЫЕ АКЦЕНТУАЦИИ У ЗАКЛЮЧЕННЫХ

Статья в формате PDF 118 KB...

28 07 2019 22:39:14

ИСТОРИЯ РЕЛИГИИ. КУРС ЛЕКЦИЙ (учебное пособие)

Статья в формате PDF 117 KB...

26 07 2019 13:30:33

ПЕТРОЛОГИЧЕСКИЕ ЧЕРТЫ МЕТАЛЛОГЕНИИ ЗОЛОТА

Статья в формате PDF 298 KB...

21 07 2019 1:30:15

ВЛИЯНИЕ ХАРАКТЕРИСТИК СТРУКТУРНОЙ ГЕТЕРОГЕННОСТИ НА ПРОЦЕССЫ ИЗНАШИВАНИЯ ТЕРМОДИФФУЗИОННЫХ ПОКРЫТИЙ

В течение продолжительного времени проводились триботехнические испытания различных термодиффузионных покрытий на изнашивание при трении скольжения. Они позволили сделать ряд принципиальных обобщений по взаимообусловленности структурного состояния покрытий и кинетики процессов износа. В результате моделирования фрикционных процессов широкого класса материалов было получено эмпирическое уравнение для коэффициента трения, отражающее параметрическое влияние свойств материала покрытий, реологию поверхностного трения и свойство смазочного материала. ...

18 07 2019 11:17:45

ПСИХОЛОГИЯ И ПЕДАГОГИКА (учебное пособие)

Статья в формате PDF 107 KB...

17 07 2019 11:57:56

УПРАВЛЕНИЕ АДАПТИВНЫМИ ОБРАЗОВАТЕЛЬНЫМИ СИСТЕМАМИ

Статья в формате PDF 124 KB...

15 07 2019 1:21:31

ОПРЕДЕЛЕНИЕ МОМЕНТА ТРЕНИЯ В ПОДШИПНИКАХ КАЧЕНИЯ

Статья в формате PDF 294 KB...

13 07 2019 8:34:17

ПОДТВЕРЖДЕНИЕ ЭФФЕКТИВНОСТИ ПРИМЕНЕНИЯ ПРЕПАРАТА «КОРТЕКСИН» У ПОДРОСТКОВ МЕТОДОМ ИК-СПЕКТРОМЕТРИИ

Малоизученным направлением в диагностике психосоматических заболеваний является исследование физико-химических характеристик крови. Методы, применяемые в диагностике и контроле лечения психосоматических заболеваний в целом, и задержке психического развития в частности ( З П Р), являются достаточно субъективными. Во многом это обусловлено отсутствием однозначных лабораторно-диагностических методов, позволяющих осуществлять диагностику на ранних этапах заболевания. Целью нашего исследования явилось изучение особенностей И К – спектра сыворотки крови детей подросткового возраста. В качестве субстрата для исследования использовали сыворотку крови больных детей, которую затем подвергали И К-спектроскопии с регистрацией спектров поглощения в области 3500-963 см-1. Исследована сыворотка крови 30 детей с диагнозом З П Р и 30 здоровых, сопоставимых по возрасту и полу. Было проведено сравнение И К-спектра сыворотки крови больных с  З П Р и здоровых доноров. Достоверно выявлена разница показателей инфракрасной спектрометрии в норме и патологии, а так же проверена эффективность применяемой терапии. Таким образом, с помощью И К-спектрометрии установлены особенности спектров сыворотки крови детей подросткового возраста и выявлены отличия в спектре у детей с  З П Р и динамические изменения в процессе лечения, что может использоваться для диагностики данной патологии, а так же для контроля за эффективностью проводимого лечения. ...

12 07 2019 8:43:32

РАЦИОНАЛЬНОЕ НЕДРОПОЛЬЗОВАНИЕ – ПУТЬ К ПРОЦВЕТАНИЮ

Статья в формате PDF 213 KB...

01 07 2019 7:12:13

СЕТЕВЫЕ МЕТОДЫ РЕШЕНИЯ ЗАДАЧИ КОММИВОЯЖЁРА

Статья в формате PDF 423 KB...

29 06 2019 18:17:47

О МОДУЛЯРНЫХ РЕШЕТКАХ В ИЕРАРХИИ СТРАТ

Статья в формате PDF 139 KB...

28 06 2019 5:15:26

ЭКОЛОГИЧЕСКИЙ АСПЕКТ ИСПОЛЬЗОВАНИЯ ПРИРОДНОЙ РЕНТЫ

Статья в формате PDF 122 KB...

25 06 2019 21:34:55

ГУСЕВА ЛЮБОВЬ АКИМОВНА

Статья в формате PDF 66 KB...

20 06 2019 21:59:51

ГЕОЭКОЛОГИЧЕСКИЕ ПРОБЛЕМЫ СОВРЕМЕННОЙ РАКЕТНО-КОСМИЧЕСКОЙ ДЕЯТЕЛЬНОСТИ

К настоящему времени геофизика накопила о магнетизме Земли огромную информацию, большая часть которой получена в новейший период исследований космического пространства путём непосредственных инструментальных исследований с помощью космических летательных аппаратов, но построить на традиционных теоретических основаниях общепризнанную теорию о происхождении магнетизма Земли пока не удавалось никому [1]. Учитывая продуктивность магнитодинамического взгляда ряда фундаментальных проблем физики и многочисленных технических задач [2], можно надеяться на аналогичную продуктивность при рассмотрении некоторых из многочисленных аспектов фундаментальной проблемы стационарного геомагнетизма, среди которых первичной представляется его происхождение. ...

10 06 2019 18:13:25

Заживление суставного хряща при имплантации минерального компонента костного матрикса

В эксперименте на половозрелых крысах Wistar исследованы особенности регенерации суставного хряща коленного сустава после имплантации в зону повреждения гранулированного минерального компонента костного матрикса ( М К К М), полученного по оригинальной технологии. Установлено, что М К К М имеет упорядоченную высокопористую структуру, близкую к естественной архитектонике костного матрикса и химический состав, соответствующий минеральному составу кости. М К К М обладает выраженными хондро- и остеиндуктивными свойствами, обеспечивает пролонгированную активизацию репаративного процесса, ускоренное органотипическое ремоделирование и восстановление поврежденного суставного хряща. ...

09 06 2019 1:35:33

ИСТОЧНИКИ И УСЛОВИЯ РАЗВИТИЯ СУБЪЕКТНОСТИ ЛИЧНОСТИ

Статья в формате PDF 138 KB...

06 06 2019 15:45:21

СТВОЛОВЫЕ КЛЕТКИСК: ИЗОБРЕТЕНИЯ, ПАТЕНТЫ, ФИРМЫ

Статья в формате PDF 120 KB...

03 06 2019 20:50:46

Взаимодействие науки и технологии

Статья в формате PDF 267 KB...

29 05 2019 10:57:58

ИСКУССТВОВЕДЕНИЕ В СИСТЕМЕ ГУМАНИТАРНОГО ЗНАНИЯ

Статья в формате PDF 119 KB...

24 05 2019 22:42:19

Еще:
Обзоры -1 :: Обзоры -2 :: Обзоры -3 :: Обзоры -4 :: Обзоры -5 :: Обзоры -6 :: Обзоры -7 :: Обзоры -8 :: Обзоры -9 :: Обзоры -10 :: Обзоры -11 ::

Последовательность подготовки научной работы может быть такой:

Выбор темы. Это важный этап. Во-первых, тема должна быть интересна не только вам, но и большинству слушателей, которым вы будете её докладывать, чтобы вы видели заинтересованность в их глазах, а не откровенную скуку.

Выбор целей и задач своей научной работы. То есть, нужно сузить тему. Например, тема: «Грудное вскармливание», сужение темы: «Грудное вскармливание среди студенток нашего ВУЗа». И если общая тема мало кому интересна, то суженная до рамок собственного института или университета, она становится интересной практически для всех слушателей. Целью может стать: «Содействие оптимальным условиям вскармливания грудью детей студентов нашего ВУЗа», а задачей — доказать, что специальные условия, созданные для кормящих студенток, не помешают их успеваемости, но уменьшат количество пропусков, академических отпусков и способствуют выращиванию здоровых детей — нашего будущего. Понятно, что эта тема подходит для студентов медицинских и педагогических ВУЗов, но и в других учебных учреждениях можно найти темы, интересные всем.

Разработать методы исследования и сбора информации. В случае с естественным вскармливанием, скорее всего, это будет анкетирование студенток, имеющих детей.

Систематизировать материал и подготовить презентацию.

Подготовиться к выступлению.

Выступить и получить: награду, удовольствие и опыт, чтобы в следующем году выступить ещё лучше и сорвать шквал аплодисментов, стать узнаваемым, а значит — более конкурентоспособным!