IT-Reviews    

О КРАЕВОЙ ЗАДАЧЕ ДЛЯ ДИФФЕРЕНЦИАЛЬНЫХ ОПЕРАТОРОВ ВЫСОКИХ ПОРЯДКОВ С СУММИРУЕМЫМ ПОТЕНЦИАЛОМ С ГЛАДКОЙ ВЕСОВОЙ ФУНКЦИЕЙ

c78089d0
Митрохин С.И. Статья в формате PDF 1463 KB

Рассмотрим следующую краевую задачу:

 (1)

с граничными условиями

 (2)

где потенциал q(x) - суммируемая функция, удовлетворяющая условию

 (3)

В уравнении (1) число λ - спектральный параметр, функция ρ(x) называется весовой функцией, функция q(x) называется потенциалом, число n - порядок дифференциального оператора (1)-(2), n = 2, 3, 4, ...

Мы будем предполагать, что весовая функция ρ(x) является достаточно гладкой: .

Автором разработан метод нахождения асимптотики собственных значений и асимптотики собственных функций краевых задач типа (1)-(2) при условии выполнения (3). Для случая n = 2, ρ(x) = 1 другой метод был продемонстрирован в фундаментальной работе [1].

Кроме дифференциального уравнения (1), рассмотрим также вспомогательное дифференциальное уравнение

 (4)

Для изучения асимптотики собственных значений и асимптотики собственных функций краевых задач, связанных с дифференциальным уравнением (1), необходимо знать асимптотику решений дифференциальных уравнений (1) и (4).

Пусть  - некоторая фиксированная ветвь корня, выбранная условием .
Пусть ωk - корни n-й степени из единицы, то есть   n = 2, 3, 4, ...; k = 1, 2, ..., n - 1, n. Эти числа удовлетворяют следующим свойствам:  m = 1, 2, 3, ..., n - 1.

Теорема 1. Решение дифференциального уравнения (1) является решением следующего интегрального уравнения Вольтерра:

(5)

где yk(x, s) (k = 1, 2, ..., n) - фундаментальная система решений вспомогательного дифференциального уравнения (4), Δ0(s) - определитель Вронского этих решений:

при этом несложно доказать, что Δ0(s)  не зависит от x, Ck(k = 1,2,...,n) - произвольные постоянные.

Из формулы (5) методом последовательных приближений Пикара можно вывести асимптотику решений дифференциального уравнения (1). Для дифференциального оператора второго порядка это было сделано автором в работе [2].

При этом из теоремы 1 видно, что для нахождения асимптотики решений дифференциального уравнения (1) необходимо знать асимптотику решений { yk (x,s) , k = 1,2,..,n } вспомогательного дифференциального уравнения (4) при больших значениях спектрального параметра λ (то есть асимптотику при |s| → + ∞ ).

Теорема 2. Общее решение вспомогательного дифференциального уравнения (4) имеет следующий вид:

 (6)

где Ck (k = 1,2,..,n) - произвольные постоянные, yk(x, s) - линейно независимые решения дифференциального уравнения (4), причём при  |s| → + ∞ ). справедливы следующие асимптотические разложения:

 k = 1,2, .., n (7)

Идею разложения вида (7) мы нашли в монографии М.В. Федорюка [3].

Введём следующие обозначения:

(8)

Через «+...» в формулах (7) и (8) обозначены следующие выражения:

Условие  позволяет асимптотические разложения вида (7) дифференцировать почленно n раз (n = 2, 3, ...). При этом мы получим:

(9)

При этом в формуле (10) Ψm-8 (x) - некоторая функция, причём если у сомножителя (aωks)m-p (p = 1, 2, 3, ...) степень m - p становится меньше нуля, то это слагаемое обнуляется.

Приведём ещё пару формул для Фpn (x,s) в равенстве (9):

При этом на коэффициенты Bpn,m, Dpn,m, E pn,m, (p = 1, 2, 3, ...) из формул (10)-(12) нами впервые получены реккурентные соотношения, из которых методом математической индукции можно вывести формулы для этих коэффициентов в явном виде и тем самым получить асимптотические формулы для решений вспомогательного дифференциального уравнения (4) (и дифференциального уравнения (1) тоже), а также асимптотические формулы для собственных значений краевой задачи (1)-(2).
Например:

Если мы подставим формулы (9)-(13) при n = 2 (или при n = 3) в дифференциальное уравнение (1) (при n = 2, или при n = 3), приведём подобные слагаемые и приравняем коэффициенты при одинаковых степенях s (этот метод называется методом последовательных приближений Хорна), то найдём в явном виде коэффициенты A1k2 (x), A2k2 (x), .. (или A1k3 (x), A2k3 (x),.. ). Это не было сделано ни в монографии [3], ни в других работах.

Впервые это было сделано автором в §3 главы 5 монографии [4].

Приведём явные формулы, полученные нами.

Введём необходимые нам обозначения:

Из формул (9)-(13) получаем:

(15)

(17)

Список литературы

  1. Винокуров В.А., Садовничий В. А. Асимптотика любого порядка собственных значений и собственных функций краевой задачи Штурма-Лиувилля на отрезке с суммируемым потенциалом // Известия РАН. Серия: матем. - 2000. - Т. 64, №4. - С. 47-108.
  2. Митрохин С.И. О спектральных свойствах дифференциального оператора с суммируемым потенциалом и гладкой весовой функцией. - Вестник Самарского государственного университета. Естественнонаучная серия. - 2008. - №8/1(67). - С. 172-187.
  3. Федорюк М.В. Асимптотические методы для линейных обыкновенных дифференциальных уравнений. - М.: Наука, 1983. - 352 с.
  4. Митрохин С.И. Спектральная теория операторов: гладкие, разрывные, суммируемые коэффициенты. - М.: ИНТУИТ, 2009. - 364 с.



Отзывы (через Facebook):

Оставить отзыв с помощью аккаунта FaceBook:

ОЦЕНКА МЕСТНЫХ ЗАЩИТНЫХ РЕАКЦИЙ ПРИ ПЕРИТОНИТЕ

Статья в формате PDF 111 KB...

04 07 2020 6:27:21

ЭНЕРГОСБЕРЕЖЕНИЕ ПРИ АКТИВАЦИИ ВОДЫ

Статья в формате PDF 91 KB...

23 06 2020 21:36:44

ЛЕКСИКОГРАФИЧЕСКИЕ АСПЕКТЫ ТЕРМИНОСИСТЕМЫ ЭКОЛОГИИ

Статья в формате PDF 111 KB...

16 06 2020 16:30:43

ФОРМИРОВАНИЕ СИСТЕМЫ МЕНЕДЖМЕНТА КАЧЕСТВА В ВУЗЕ

Статья в формате PDF 146 KB...

13 06 2020 2:33:29

Кристаллографические методы исследования сперматозоидов крыс при воздействии несимметричного диметилгидразина (НДМГ)

Для определения возможности использования кристаллографического метода в оценке нарушений сперматогенеза при действии химических факторов были изучены кристаллограммы лизата сперматозоидов крыс после введения Н Д М Г в дозах 5, 25, 40 и 70 мг/кг. Экспериментальные исследования проводились на белых крысах-самцах. Анализ тезиограмм показал превалирование нарушений с увеличением введенной дозы Н Д М Г, начальные нарушения выявляются на ранних сроках, во всех диапазонах доз Н Д М Г. Максимальные нарушения прослеживаются при острой интоксикации в дозе 70 мг/кг и сроке 24 часа, о чем свидетельствует увеличение центров кристаллизации, формированием грубых монокристаллов и поликристаллов. Изменения кристаллоографической картины в тезиограммах лизата спермы крыс свидетельствуют о метаболических изменениях в сперматозоидах, развивающихся в ответ на действие Н Д М Г, что позволяет рекомендовать кристаллографические методы для оценки действия репродуктивных токсикантов и они могут служить индикаторами функционального состояния организма. ...

10 06 2020 4:20:41

Методы лазеротерапии при астматическом бронхите

Статья в формате PDF 110 KB...

04 06 2020 23:20:21

МОЛЕКУЛЯРНЫЙ СОСТАВ ВОДЫ

Статья в формате PDF 343 KB...

31 05 2020 8:22:37

Клиника и лечение кишечного амебиаза

Статья в формате PDF 104 KB...

29 05 2020 18:50:20

СТРУЙНОЕ ДЕМПФИРОВАНИЕ

Статья в формате PDF 125 KB...

25 05 2020 12:40:57

ДИДАКТИЧЕСКИЕ ПРИНЦИПЫ ОРГАНИЗАЦИИ ПРОДУКТИВНОЙ УМСТВЕННОЙ ДЕЯТЕЛЬНОСТИ ШКОЛЬНИКОВ ПРИ ФОРМИРОВАНИИ ЗНАНИЙ

Рассматривается проблема организации продуктивной умственной деятельности учащихся общеобразовательных учреждений в системе дидактических принципов современной педагогики. Анализ принципов показывает, что отечественная дидактика в большой мере сохраняет черты традиционной модели обучения и недостаточно учитывает психологическую природу мышления и закономерности продуктивной умственной деятельности при разработке принципов обучения. Выделены основополагающие принципы организации продуктивной умственной деятельности на основе закономерностей развития знания и процесса познания, психологических закономерностей мышления. ...

24 05 2020 19:59:20

Влияние фонового квч излучения на биологические объекты и циркадные ритмы больных гипертонической болезнью

Ф Р И-терапия ( С Е М-терапия) основана на использовании материалов с управляемой энергетической структурой (CEM – Controlled Energy Material). Излучателем сверхслабых излучений К В Ч-диапазона при интенсивности 10–16–10–20  Вт/см2 является диод Ганна. Представлена оценка влияния фонового миллиметрового излучения на стафилококки, на нативную кровь, а также на вегетативный статус пациента гипертонической болезнью в сравнительном аспекте по графикам циркадных ритмов пульса при приеме: препаратов, не влияющих на ритм сердца; структурированной воды, активированной посредством аппарата «Cem-Tech»; полной дозы препарата лодоза; воды, содержащей информацию о порошкообразном лодозе. Рассмотренная индивидуальная динамика параметров ритмограммы, вычисленных на основе регистрации 500 межпульсовых интервалов, оценивалась с вычислением показателей уровня статистической значимости различий. Показано, что прием препарата Лодоз и воды содержащей информацию о препарате Лодоз сопровождается сходными изменениями, как частоты пульса, так и внутренней структуры информационного паттерна HRV. Динамика параметров ритма сердца свидетельствует о мобилизации холинергических механизмов регулирования. ...

22 05 2020 11:35:23

МОЛОЧНЫЙ КОКТЕЙЛЬ «ДИАБЕТИЧЕСКИЙ»

Статья в формате PDF 244 KB...

19 05 2020 4:57:47

О СТРОЕНИИ И ТОПОГРАФИИ КРАНИАЛЬНЫХ БРЫЖЕЕЧНЫХ ЛИМФАТИЧЕСКИХ УЗЛОВ У НОВОРОЖДЕННЫХ БЕЛОЙ КРЫСЫ

Краниальные брыжеечные лимфатические узлы у новорожденных белой крысы располагаются главным образом вдоль ствола одноименной артерии и отличаются слабо дифференцированной паренхимой. ...

15 05 2020 15:42:47

ОБЪЕКТ И ПРЕДМЕТ НАУКИ

Статья в формате PDF 129 KB...

13 05 2020 2:59:31

КРИТЕРИИ ОТВЕТСТВЕННОГО ОТЦОВСТВА

Статья в формате PDF 116 KB...

11 05 2020 7:30:49

ИНТЕГРАЦИЯ ФАРМАКОЛОГИЧЕСКИХ ЭФФЕКТОВ ИЗОНИАЗИДА В ХИМИОТЕРАПИИ ТУБЕРКУЛЕЗА ЛЕГКИХ

Предложен метод межреберного внутримышечного введения препаратов с непосредственным ультразвуковым «метод глубокого фонофореза», или лазерным воздействием «метод глубокого фотофореза» на место инъекции по рентгенологической проекции воспалительной зоны, и изучены механизмы их лечебного действия у больных деструктивным туберкулезом легких с выраженным пневмофиброзом и патологией органов пищеварения. Создание в очаге туберкулезного поражения повышенной концентрации изониазида повышает эффективность химиотерапии туберкулеза легких в условиях выраженного пневмофиброза изученными методами на 18%. ...

10 05 2020 10:36:42

ИСТОРИЯ РЕЛИГИИ. КУРС ЛЕКЦИЙ (учебное пособие)

Статья в формате PDF 117 KB...

06 05 2020 19:50:36

ФАКТОРЫ ОБЕСПЕЧЕНИЯ КОНКУРЕНТОСПОСОБНОСТИ ТОВАРОВ

Статья в формате PDF 93 KB...

26 04 2020 14:30:41

ВОЗРАСТНОЕ РАСПРЕДЕЛЕНИЕ ДЕРЕВЬЕВ РАЗНОВОЗРАСТНОГО СОСНЯКА ПО КАЧЕСТВУ СОРТИМЕНТОВ

Для налаживания лесной аренды и рационализации лесопользования, прежде всего, в части заготовки кругляка выборочными рубками деревьев по долгосрочным проектам освоения лесов, требуется сортиментацию проводить непосредственно в конкретном лесном древостое, причем задолго до проведения самой заготовки древесины. На основе применения биотехнических закономерностей и простой шкалы качества сортиментов показана методика сортиментации лесных деревьев. ...

15 04 2020 13:58:20

ПЕРЕСЕЛЕНЧЕСКИЙ КАПИТАЛИЗМ В США

Статья в формате PDF 320 KB...

10 04 2020 10:18:57

Гиперболическая модель задачи о фазовом переходе

Статья в формате PDF 117 KB...

02 04 2020 1:57:50

ОПЕРЕЖАЮЩЕЕ АНТИКРИЗИСНОЕ УПРАВЛЕНИЕ ПРЕДПРИЯТИЕМ

В статье исследованы некоторые проблемы опережающего антикризисного управления предприятием. ...

29 03 2020 2:13:48

АНДРАГОГИЧЕСКИЕ ПРОБЛЕМЫ В ПРОФЕССИОНАЛЬНОЙ ПОДГОТОВКЕ МЕДИЦИНСКИХ РАБОТНИКОВ

Обучение взрослых дипломированных специалистов существенно отличается от обучения студентов. Если на додипломном уровне приемлема педагогическая модель обучения с доминантой обучающего, то на этапе же последипломного образования необходимо руководствоваться продуктивной андрагогической моделью обучения. Её главный постулат: обучающийся – ведущее звено в процессе образования. Исходя из этого, в течение ряд лет мы используем методику психологического типирования личности американского исследователя Д. Кейрси. И на основании выявления уровней подготовки, психофизиологических и личностных особенностей обучающихся практикуем деловые игры, мастер-классы, создание взрослыми обучающимися порт-фолио непосредственно на рабочем месте. Результаты положительные. ...

21 03 2020 17:31:56

МОБИЛЬНЫЕ СИСТЕМЫ В СОВРЕМЕННОЙ АРХИТЕКТУРЕ

Статья в формате PDF 165 KB...

17 03 2020 18:11:49

ПРИМЕНЕНИЕ СВЕРХПРОВОДНИКОВ В ЭНЕРГЕТИКЕ

Статья в формате PDF 267 KB...

16 03 2020 8:15:20

НЕКОТОРЫЕ СВЕДЕНИЯ О ПРОДУКТАХ ИЗ БОБОВ СОИ

Статья в формате PDF 130 KB...

11 03 2020 14:11:13

РОЛЬ ВОДЫ В ОСНОВНЫХ СТРУКТУРАХ ЖИВОГО ОРГАНИЗМА

Статья в формате PDF 950 KB...

10 03 2020 14:55:10

ОСОБЕННОСТИ МИКРОФИЛЬМИРОВАНИЯ УГАСАЮЩИХ ДОКУМЕНТОВ

В статье рассматривается вопрос долговременного архивного хранения угасающих документов. Проанализированы сложности, возникающие при их микрофильмировании. Предложена методика предварительной компьютерной обработки сканированных изображений таких документов, обеспечивающая повышение качества их визуального восприятия до требований государственного стандарта к микрофильмируемым оригиналам. Обработанные изображения в дальнейшем могут быть выведены на фотоплёнку с использованием COM-систем (Computer Output Microfilm), либо распечатаны на бумажный носитель и микрофильмированы обычным способом. ...

09 03 2020 18:42:24

МИГРАЦИЯ ТЯЖЕЛЫХ МЕТАЛЛОВ ЧЕРЕЗ ВРЕДНЫЕ ПРИВЫЧКИ

Статья в формате PDF 110 KB...

07 03 2020 18:32:45

МОРФОЛОГИЧЕСКИЕ ОСНОВЫ ФОРМИРОВАНИЯ ИММУНИТЕТА

Статья в формате PDF 152 KB...

06 03 2020 13:59:19

ПОВЕРХНОСТНЫЕ ГРАВИТАЦИОННЫЕ ЭЛЕКТРОКАПИЛЛЯРНЫЕ ВОЛНЫ

Исследовано распространение нелинейных поверхностных гравитационных электрокапиллярных волн на поверхности жидкого проводника. Библиогр. 6 назв. ...

05 03 2020 19:40:53

ПОЛИАРИЛАТЫ С ПОВЫШЕННОЙ ХИМИЧЕСКОЙ УСТОЙЧИВОСТЬЮ

Статья в формате PDF 109 KB...

25 02 2020 21:51:16

ЛАЗЕР КАК ИСТОЧНИК АКТИВНОГО ИЗЛУЧЕНИЯ

Статья в формате PDF 311 KB...

23 02 2020 19:20:28

ПРИМЕНЕНИЕ МЕАТОТИМПАНАЛЬНОЙ НОВОКАИНОВОЙ БЛОКАДЫ В КОМПЛЕКСНОМ ЛЕЧЕНИИ ОТИТОВ У СОБАК

В работе изучено состояние клинико-иммунологического статуса при хронических и инфекционно-аллергических отитах у собак. Дана сравнительная оценка сочетанного применения меатотимпанальной новокаиновой блокады с лекарственными препаратами при лечении отитов у собак с другими известными методами и изучено их влияние на клеточные и гуморальные звенья иммунной системы. ...

21 02 2020 10:13:26

РОЛЬ ГОСУДАРСТВА В УСЛОВИЯХ ГЛОБАЛИЗАЦИИ

Статья в формате PDF 277 KB...

15 02 2020 14:26:58

УНИВЕРСАЛЬНЫЙ ХАРАКТЕР РЕКУРРЕНТНЫХ ЗАВИСИМОСТЕЙ ФИЗИКО-ХИМИЧЕСКИХ СВОЙСТВ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

Уникальные возможности линейных рекуррентных уравнений первого порядка А(n+1) = aA(n) + b позволяют характеризовать закономерности изменения различных свойств органических соединений ( А) не только в пределах локальных групп гомологов, но и одновременно всех рядов с одинаковыми гомологическими разностями. Более того, рекуррентные соотношения применимы к функциям не только целочисленных (число атомов углерода в молекуле), но и равноотстоящих значений аргументов A(x+Δx) = aA(x) + b, (Δx = const). Этот способ аппроксимации проиллюстрирован на примерах температурных зависимостей растворимости различных веществ в воде и даже времен релаксации в высокочастотных полях. ...

09 02 2020 17:56:27

Еще:
Обзоры -1 :: Обзоры -2 :: Обзоры -3 :: Обзоры -4 :: Обзоры -5 :: Обзоры -6 :: Обзоры -7 :: Обзоры -8 :: Обзоры -9 :: Обзоры -10 :: Обзоры -11 ::

Последовательность подготовки научной работы может быть такой:

Выбор темы. Это важный этап. Во-первых, тема должна быть интересна не только вам, но и большинству слушателей, которым вы будете её докладывать, чтобы вы видели заинтересованность в их глазах, а не откровенную скуку.

Выбор целей и задач своей научной работы. То есть, нужно сузить тему. Например, тема: «Грудное вскармливание», сужение темы: «Грудное вскармливание среди студенток нашего ВУЗа». И если общая тема мало кому интересна, то суженная до рамок собственного института или университета, она становится интересной практически для всех слушателей. Целью может стать: «Содействие оптимальным условиям вскармливания грудью детей студентов нашего ВУЗа», а задачей — доказать, что специальные условия, созданные для кормящих студенток, не помешают их успеваемости, но уменьшат количество пропусков, академических отпусков и способствуют выращиванию здоровых детей — нашего будущего. Понятно, что эта тема подходит для студентов медицинских и педагогических ВУЗов, но и в других учебных учреждениях можно найти темы, интересные всем.

Разработать методы исследования и сбора информации. В случае с естественным вскармливанием, скорее всего, это будет анкетирование студенток, имеющих детей.

Систематизировать материал и подготовить презентацию.

Подготовиться к выступлению.

Выступить и получить: награду, удовольствие и опыт, чтобы в следующем году выступить ещё лучше и сорвать шквал аплодисментов, стать узнаваемым, а значит — более конкурентоспособным!