IT-Reviews    

МЕТОД ГРАНИЧНЫХ ИНТЕГРАЛЬНЫХ УРАВНЕНИЙ В ОЦЕНКЕ СОБСТВЕННЫХ ЧАСТОТ ОБЛАСТИ СО СКОСАМИ СТЕН

c78089d0 Источник:
Абрамов В.В. Статья в формате PDF 835 KB

Рассмотрим задачу о расчете собственных частот колебания прямоугольной области со скосами стен. Данная проблема актуальна в акустике помещений при улучшении качества звучания. Для решения задачи используем метод граничных интегральных уравнений (ГИУ).

Остановимся на геометрии этой области. Пусть две смежные стороны без скоса имеют размеры a и b. А две другие зададим, как уравнение прямой через угловой коэффициент и точку:

 (1)

 (2)

где k* = ctgα, k2 = tgβ. Углы a и b отсчитываются от соответствующих сторон прямоугольника с размерами a на b, как показана на рисунке.

Геометрия задаваемой области

Заметим, что такая параметризация скошенных сторон четырехугольника позволит избежать неприятностей при переходе к прямоугольнику.

Будем рассматривать только выпуклые четырехугольники. Для этого наложим ограничения на углы скоса сторон. Такими условиями очевидно являются:

 (3)

 (4)

 (5)

 (6)

Отметим, условия (5) и (6) есть ни что иное, как условия нахождения точки пересечения двух скошенных сторон в правом верхнем квадранте.

Вернемся к решению самой задачи. Мы рассматриваем поле давлений внутри четырехугольной области с двумя смежными скошенными сторонами. Известно, что в данной области поле давлений удовлетворяет уравнению Гельмгольца:

 (7)

где  - волновое число, ω - круговая частота, c - скорость звука в данной среде.

Рассмотрим граничные условия. Оно имеет вид:

 (8)

где l - контур (в нашем случаи четырехугольник). Заметим, что полное давление представимо в виде:

 (9)

где pinc - поле давлений порожденное точечным источником звука; psc - отраженное поле давлений.

Рассмотрим задачу об нахождении отраженного поля на контуре l. Для этого, перепишем условия (7) и (8) с учетом (9). Тогда получим:

 (10)

Решать систему (10) будем с помощью метода граничных интегральных уравнений (МГИУ). Зафиксируем точку x = (x1, x2) внутри контура l, а точка y = (y1, y2) - переменная. Введем расстояние между точками x и y, как .

Заметим, функция Грина для данной задачи имеет вид:

 (11)

где  - функция Ханкеля, а J0(kr), Y0(kr) - функции Бесселя первого и второго рода соответственно, причем она сама по определению удовлетворяет уравнению Гельмгольца:

. (12)

Возьмем первое уравнение (10) и умножим его на функцию Грина, затем уравнение (12) умножим на отраженное поле давлений, вычитаем одно из другого и интегрируем по области заключенной в нашем четырехугольнике. Далее воспользовавшись формулой Грина получим:

 (13)

Устремив  и воспользовавшись свойствами потенциала двойного слоя, получим:

 (14)

В формуле (14) было использовано второе уравнение из (10).

Стоит отметить, что pinc удовлетворяет уравнению Гельмгольца (7), а следовательно имеет вид:

 (15)

Заметим, что интегральное уравнение (14) является уравнением Фредгольма второго рода, правая часть которого нам известна, так как функция Грина известна из (11), а из (15) следует что:

 (16)

где 

 (17)

и  - внешняя нормаль.

Разберемся с вопросом о выборе внешней нормали на каждой из сторон. Очевидно, что для стороны длинной a внешняя нормаль - , для стороны длинной b внешняя нормаль - , для стороны y1 внешняя нормаль - ; для стороны y2 внешняя нормаль - .

Решим интегральное уравнение (14) методом коллокаций. Организуем две последовательности:  - внешние узлы и  - внутренние узлы, где i = 1, ..., N и j = 1, ..., N. Заметим, что методом коллокаций называется такой численный метод дискретизации интегрального (14) при котором множество внутренних узлов совпадает с множеством внешних узлов, то есть . Из вида уравнения (14) отраженное поле следует искать в виде:

 (18)

Тогда дискретизируя уравнение (14) и разделяя вещественные и мнимые части в нем получим:

 (19)

 (20)

где ,  и Dl - величина шага.

Введем обозначения:

Таким образом, мы получили систему вида Ap = f, где A ∈ M2N×2N; p, f ∈ R2N и имеют вид:

   

Заметим, что диагональные элементы матрицы A ∈ M2N×2N должны иметь вид , но так как , то ими можно пренебречь.

Так как на диагонали матрицы A ∈ M2N×2N стоят элементы большие, чем остальные элементы матрицы, то эта матрица хорошо обусловлена. Для решения данной системы линейных алгебраических уравнений можно пользоваться QL - алгоритмами.

Предложенный в данной работе метод был апробирован на конкретных тестовых геометриях, для которых удается эффективно построить распределение первой сотни собственных частот колебания в реальном масштабе времени.

Список литературы

  1. Исакович М.А. Общая акустика. - М.: Наука, 1973.
  2. Бреббия К., Теллес Ж., Вроубел Л. Методы граничных элементов. - М.: Мир, 1987.
  3. Бенерджи П., Баттерфилд Р. Методы граничных элементов в прикладных науках. - М.: Мир, 1984.



Отзывы (через Facebook):

Оставить отзыв с помощью аккаунта FaceBook:

ПОЦЕЛУЕВА ЛЮДМИЛА АЛЕКСАНДРОВНА

Статья в формате PDF 109 KB...

23 01 2021 5:31:25

Краснощекова Галина Алексеевна

Статья в формате PDF 177 KB...

22 01 2021 3:37:16

ПЕРВОЕ НАЧАЛО ТЕРМОЛЕВИТАЦИИ

Статья в формате PDF 114 KB...

19 01 2021 14:22:35

ЧЕМ УДИВЛЯЕТ НАС ВОДА

Статья в формате PDF 284 KB...

14 01 2021 8:50:31

ЭМОТИВНЫЙ КОНЦЕПТ «ОБИДА» В ХУДОЖЕСТВЕННОМ ПРОСТРАНСТВЕ

В статье на основе материала « Национального корпуса русского языка» дан анализ вербальному и невербальному воплощению эмотивного концепта «обида» в художественном тексте. На языковом уровне рассмотрена сочетаемость лексемы «обида» с другими словами-эмотивами. На неязыковом уровне охарактеризованы невербальные компоненты проявления данной эмоции (плач, взгляд, жесты). Представленный анализ позволяет сделать вывод о национальной специфики данного чувства. ...

13 01 2021 16:21:23

ОБЩЕБИОЛОГИЧЕСКИЕ АСПЕКТЫ МОРФОФУНКЦИОНАЛЬНОГО СИНТЕЗА ПРИ ИЗУЧЕНИИ НЕРВНОЙ И СЕРДЕЧНО-СОСУДИСТОЙ СИСТЕМ МЛЕКОПИТАЮЩИХ

Авторами проведено комплексное исследование сосудистых и нервных структур всего органокомплекса брюшной полости, что позволило подтвердить общие морфологические закономерности, свойственные млекопитающим отряда хищных, выявить характерные видовые и внутривидовые особенности васкуляризации и иннервации у пушных зверей клеточного содержания. Полученные новые данные о морфологии сосудистых и нервных образований органов брюшной полости млекопитающих являются оригинальными и дают не только полное представление об изученных структурах, но позволяют морфофункционально интерпретировать адаптогенные процессы, протекающие в интегративно-координационных системах организма пушных зверей, находящихся под интенсивным антропогенным воздействием в процессе доместикации. ...

08 01 2021 13:50:53

БИЗНЕС-ПЛАН: СТРАТЕГИЯ И ТАКТИКА ПРЕДПРИЯТИЯ

Статья в формате PDF 112 KB...

05 01 2021 5:26:27

Изомерия и гомеостаз популяций

Статья в формате PDF 102 KB...

27 12 2020 23:44:21

МЕЖДУНАРОДНЫЙ КОНГРЕСС «ПРАКТИКУЮЩИЙ ВРАЧ»

Статья в формате PDF 251 KB...

24 12 2020 11:33:40

ПОДЖЕЛУДОЧНАЯ ЖЕЛЕЗА У БЕЛОЙ КРЫСЫ

Статья в формате PDF 297 KB...

18 12 2020 4:47:41

НЕКОТОРЫЕ ЗАКОНОМЕРНОСТИ ТЕОРИИ РАДИОАКТИВНОСТИ

Статья в формате PDF 83 KB...

15 12 2020 19:52:56

К ТЕОРИИ ВИНТОВОГО ПРЕОБРАЗОВАТЕЛЯ СИЛ

Статья в формате PDF 376 KB...

13 12 2020 11:36:28

Гиперболическая модель задачи о фазовом переходе

Статья в формате PDF 117 KB...

11 12 2020 20:32:41

ВИНОКУРОВ ИВАН НИКОЛАЕВИЧ

Статья в формате PDF 285 KB...

10 12 2020 19:23:27

ИЗУЧЕНИЕ УСЛОВИЙ ПОЛУЧЕНИЯ ФИЦИН-СОДЕРЖАЩЕГО СЫРЬЯ

Статья в формате PDF 124 KB...

02 12 2020 15:47:49

МЕТОДОЛОГИЯ ПРОГНОЗИРОВАНИЯ ЭКОНОМИЧЕСКОГО ПОТЕНЦИАЛА РЕГИОНА

Статья посвящена авторской методологии прогнозирования экономического потенциала региона на примере Краснодарского края. В ходе научных исследований был разработан оригинальный математический аппарат, позволяющий оценить основные экономические показатели региона, который применяется для социально-экономического прогноза региона на текущий и перспективный периоды. Описательная часть содержит основные подходы и этапы эффективного экономического прогнозирования региона. ...

01 12 2020 1:58:35

МОДЕЛЬ ПРОЦЕССА ПЕРЕНОСА КОЛИЧЕСТВА ЗАРЯДА – ЭЛЕКТРИЧЕСКАЯ ПРОВОДИМОСТЬ РАСТВОРОВ ХЛОРОВОДОРОДА В Н-СПИРТАХ

Ранее авторами была показана применимость плазмоподобной теории растворов для расчетов эквивалентной электропроводности растворов различных электролитов в воде и этаноле. В данной статье были экспериментально измерены значения электропроводности хлороводорода в четырех н-спиртах (этаноле, пропаноле, бутаноле и пентаноле) при различных температурах (278-328 К), а также получены расчетные значения электропроводности. Сделан вывод о хорошем соответствии расчетных данных экспериментальным. ...

27 11 2020 16:36:15

БИОТЕХНИЧЕСКИЙ ЗАКОН И ВИДЫ ФАКТОРНЫХ СВЯЗЕЙ

Статья в формате PDF 215 KB...

26 11 2020 11:46:43

МИНИМИЗАЦИЯ РАБОТЫ ПОДЪЕМА ТЕЛА В ОДНОРОДНОМ ПОЛЕ СИЛЫ ТЯЖЕСТИ

Работа подъема тела в однородном поле силы тяжести всегда больше потенциальной энергии . Для минимизации работы силой тяги, равной , необходимо отключать силу тяги на некоторой высоте . Дальнейшее движение вверх до высоты  происходит по инерции. Только в случае  работа подъема будет стремиться к минимальному значению, равному . ...

25 11 2020 6:21:44

ОСОБЕННОСТИ ВОССТАНОВЛЕНИЯ ПОРШНЕЙ ИЗ СПЛАВОВ АЛЮМИНИЯ АВТОТРАКТОРНОЙ ТЕХНИКИ

В статье рассмотрен прцесс химического никелирования деталей машин и оборудования как эффетивный и экономически выгодный способ получения стойких покрытий. Предлагается внедрить этот процесс в технологию восстановления деталей автотракторной техники из алюминиевых сплавов. ...

24 11 2020 6:11:29

РАСПРОСТРАНЕННОСТЬ ОНМК СРЕДИ ЛИЦ МОЛОДОГО ВОЗРАСТА

Статья в формате PDF 261 KB...

23 11 2020 15:24:50

СТУПЕНЧАТЫЕ ПРЕДСТАВЛЕНИЯ НА ГРАФАХ

Статья в формате PDF 127 KB...

15 11 2020 7:52:41

КЛИНИКО-ЭКСПЕРИМЕНТАЛЬНЫЕ АСПЕКТЫ ИЗУЧЕНИЯ ГЕМОРРАГИЧЕСКОГО СИНДРОМА ПРИ ЦИРРОЗАХ ПЕЧЕНИ

Статья посвящена современным проблемам гепатоэетерологии, в частности геморрагическому синдрому при заболеваниях печени. Основное место уделено алкогольным поражением печени. В статье присутствуют материалы посвященные изучению системы гемостаза, являющиеся сложной и актуальной проблемой в настоящее время. ...

10 11 2020 0:39:25

ГОРМОНАЛЬНЫЕ ПОКАЗАТЕЛИ ПРИ РАЗНЫХ ТИПАХ ОЖИРЕНИЯ

Статья в формате PDF 112 KB...

03 11 2020 4:47:28

АКТУАЛЬНОСТЬ ЭКОЛОГИЧЕСКОГО ОБРАЗОВАНИЯ

Статья в формате PDF 129 KB...

01 11 2020 20:39:55

Изучение эффективности галавтилина у больных рожей

Статья в формате PDF 115 KB...

21 10 2020 0:36:41

ПОЛИАРИЛАТЫ С ПОВЫШЕННОЙ ХИМИЧЕСКОЙ УСТОЙЧИВОСТЬЮ

Статья в формате PDF 109 KB...

19 10 2020 5:22:30

Пимнева Людмила Анатольевна

Статья в формате PDF 148 KB...

18 10 2020 5:56:44

САТУРАТОРЫ ИНЖЕКТОРНОГО ТИПА

Статья в формате PDF 91 KB...

16 10 2020 20:32:27

НЕОПРЕДЕЛЕННОСТЬ ВИДА 0/0

Статья в формате PDF 459 KB...

10 10 2020 1:47:59

О НАХОЖДЕНИИ ОБЪЕМОВ ТЕЛ ВРАЩЕНИЯ

Статья в формате PDF 271 KB...

08 10 2020 1:29:28

НПВС В КОМПЛЕКСНОЙ ТЕРАПИИ РОЖИ

Статья в формате PDF 121 KB...

06 10 2020 15:13:47

Фенологическая характеристика Ивановской области

Статья в формате PDF 267 KB...

04 10 2020 16:37:33

Клонирование М-сегмента вируса ГЛПС в вектор рGEM-T EASY

Статья в формате PDF 105 KB...

28 09 2020 5:10:55

ИЗМЕНЕНИЕ ПОКАЗАТЕЛЕЙ РАБОТЫ СЕРДЦА СТУДЕНТОВ В ТЕЧЕНИИ СЕМЕСТРА В РАЗНЫЕ ДНИ НЕДЕЛИ

Исследованы показатели сердечнососудистой системы (систолическое, диастолическое давление, частота сердечных сокращений, пульсовое давление и минутный объем крови) у студентов обоего пола среднего учебного заведения в условиях учебной нагрузки до и после занятий в разные дни недели в начале и конце семестра. Возраст участников исследования составлял 18–20 лет. При анализе результатов выявлены половые и циркосептальные особенности реакции сердечнососудистой системы на учебную нагрузку. Было установлено, что в течение недели после учебной нагрузки происходит снижение артериального давления, особенно у девушек, причем в начале семестра изменения в большей степени выражены в первой половине недели. Результаты свидетельствуют о развитии утомления и снижении адаптационных процессов, что необходимо учитывать при составлении расписания занятий и планировании учебной нагрузки. ...

27 09 2020 15:43:56

ГРИПП. КЛИНИЧЕСКАЯ СИМПТОМАТИКА

Статья в формате PDF 146 KB...

26 09 2020 15:41:39

ЭКОЛОГИЧЕСКИЕ ПРОБЛЕМЫ ХРОМОВОГО ДУБЛЕНИЯ

Статья в формате PDF 132 KB...

14 09 2020 17:26:52

«КОНСУЛЬТАТИВНАЯ ПСИХОЛОГИЯ»

Статья в формате PDF 344 KB...

13 09 2020 18:55:32

ПРЕПАРАТИВНЫЕ МЕТОДЫ СИНТЕЗА СУЛЬФИДОВ МЕТАЛЛОВ В СРЕДЕ Н-АЛКАНОВ

Разработаны препаративные методы синтеза сульфидов металлов в среде жидких н-алканов. Представлены результаты «дробного» и «свернутого» методов синтеза сульфидов металлов. Состав соединений установлен методами химического, рентгенофазового и рентгенофлуоресцентного анализов. ...

09 09 2020 6:53:15

ЗАКОН ВЕКОВОГО СМЕЩЕНИЯ ПЛАНЕТ

Статья в формате PDF 127 KB...

04 09 2020 9:32:36

ПРОПАГАНДА ПРАВОВЫХ ЗНАНИЙ В ВУЗЕ, КОЛЛЕДЖЕ, ШКОЛЕ

Статья в формате PDF 125 KB...

03 09 2020 0:11:16

СОВРЕМЕННЫЕ GRID – ТЕХНОЛОГИИ

Статья в формате PDF 254 KB...

02 09 2020 16:56:44

ГЕНЕТИКА ПОВЕДЕНИЯ: АССОЦИАЦИЯ ГЕНОТИПА ПО ЛОКУСУ TAG 1A DRD2

В работе впервые приведены сведения об особенностях аудиогенной чувствительности и поведения в «открытом поле» двух групп крыс, гомозиготных по локусу TAG 1A DRD2. ...

01 09 2020 6:36:50

ПОДВОДНЫЕ ГОРОДА

Статья в формате PDF 763 KB...

30 08 2020 4:55:34

Еще:
Обзоры -1 :: Обзоры -2 :: Обзоры -3 :: Обзоры -4 :: Обзоры -5 :: Обзоры -6 :: Обзоры -7 :: Обзоры -8 :: Обзоры -9 :: Обзоры -10 :: Обзоры -11 ::

Последовательность подготовки научной работы может быть такой:

Выбор темы. Это важный этап. Во-первых, тема должна быть интересна не только вам, но и большинству слушателей, которым вы будете её докладывать, чтобы вы видели заинтересованность в их глазах, а не откровенную скуку.

Выбор целей и задач своей научной работы. То есть, нужно сузить тему. Например, тема: «Грудное вскармливание», сужение темы: «Грудное вскармливание среди студенток нашего ВУЗа». И если общая тема мало кому интересна, то суженная до рамок собственного института или университета, она становится интересной практически для всех слушателей. Целью может стать: «Содействие оптимальным условиям вскармливания грудью детей студентов нашего ВУЗа», а задачей — доказать, что специальные условия, созданные для кормящих студенток, не помешают их успеваемости, но уменьшат количество пропусков, академических отпусков и способствуют выращиванию здоровых детей — нашего будущего. Понятно, что эта тема подходит для студентов медицинских и педагогических ВУЗов, но и в других учебных учреждениях можно найти темы, интересные всем.

Разработать методы исследования и сбора информации. В случае с естественным вскармливанием, скорее всего, это будет анкетирование студенток, имеющих детей.

Систематизировать материал и подготовить презентацию.

Подготовиться к выступлению.

Выступить и получить: награду, удовольствие и опыт, чтобы в следующем году выступить ещё лучше и сорвать шквал аплодисментов, стать узнаваемым, а значит — более конкурентоспособным!