МЕТОД ГРАНИЧНЫХ ИНТЕГРАЛЬНЫХ УРАВНЕНИЙ В ОЦЕНКЕ СОБСТВЕННЫХ ЧАСТОТ ОБЛАСТИ СО СКОСАМИ СТЕН > Научные обзоры
IT-Reviews    

МЕТОД ГРАНИЧНЫХ ИНТЕГРАЛЬНЫХ УРАВНЕНИЙ В ОЦЕНКЕ СОБСТВЕННЫХ ЧАСТОТ ОБЛАСТИ СО СКОСАМИ СТЕН

Источник:
Абрамов В.В. Статья в формате PDF 835 KB

Рассмотрим задачу о расчете собственных частот колебания прямоугольной области со скосами стен. Данная проблема актуальна в акустике помещений при улучшении качества звучания. Для решения задачи используем метод граничных интегральных уравнений (ГИУ).

Остановимся на геометрии этой области. Пусть две смежные стороны без скоса имеют размеры a и b. А две другие зададим, как уравнение прямой через угловой коэффициент и точку:

 (1)

 (2)

где k* = ctgα, k2 = tgβ. Углы a и b отсчитываются от соответствующих сторон прямоугольника с размерами a на b, как показана на рисунке.

Геометрия задаваемой области

Заметим, что такая параметризация скошенных сторон четырехугольника позволит избежать неприятностей при переходе к прямоугольнику.

Будем рассматривать только выпуклые четырехугольники. Для этого наложим ограничения на углы скоса сторон. Такими условиями очевидно являются:

 (3)

 (4)

 (5)

 (6)

Отметим, условия (5) и (6) есть ни что иное, как условия нахождения точки пересечения двух скошенных сторон в правом верхнем квадранте.

Вернемся к решению самой задачи. Мы рассматриваем поле давлений внутри четырехугольной области с двумя смежными скошенными сторонами. Известно, что в данной области поле давлений удовлетворяет уравнению Гельмгольца:

 (7)

где  - волновое число, ω - круговая частота, c - скорость звука в данной среде.

Рассмотрим граничные условия. Оно имеет вид:

 (8)

где l - контур (в нашем случаи четырехугольник). Заметим, что полное давление представимо в виде:

 (9)

где pinc - поле давлений порожденное точечным источником звука; psc - отраженное поле давлений.

Рассмотрим задачу об нахождении отраженного поля на контуре l. Для этого, перепишем условия (7) и (8) с учетом (9). Тогда получим:

 (10)

Решать систему (10) будем с помощью метода граничных интегральных уравнений (МГИУ). Зафиксируем точку x = (x1, x2) внутри контура l, а точка y = (y1, y2) - переменная. Введем расстояние между точками x и y, как .

Заметим, функция Грина для данной задачи имеет вид:

 (11)

где  - функция Ханкеля, а J0(kr), Y0(kr) - функции Бесселя первого и второго рода соответственно, причем она сама по определению удовлетворяет уравнению Гельмгольца:

. (12)

Возьмем первое уравнение (10) и умножим его на функцию Грина, затем уравнение (12) умножим на отраженное поле давлений, вычитаем одно из другого и интегрируем по области заключенной в нашем четырехугольнике. Далее воспользовавшись формулой Грина получим:

 (13)

Устремив  и воспользовавшись свойствами потенциала двойного слоя, получим:

 (14)

В формуле (14) было использовано второе уравнение из (10).

Стоит отметить, что pinc удовлетворяет уравнению Гельмгольца (7), а следовательно имеет вид:

 (15)

Заметим, что интегральное уравнение (14) является уравнением Фредгольма второго рода, правая часть которого нам известна, так как функция Грина известна из (11), а из (15) следует что:

 (16)

где 

 (17)

и  - внешняя нормаль.

Разберемся с вопросом о выборе внешней нормали на каждой из сторон. Очевидно, что для стороны длинной a внешняя нормаль - , для стороны длинной b внешняя нормаль - , для стороны y1 внешняя нормаль - ; для стороны y2 внешняя нормаль - .

Решим интегральное уравнение (14) методом коллокаций. Организуем две последовательности:  - внешние узлы и  - внутренние узлы, где i = 1, ..., N и j = 1, ..., N. Заметим, что методом коллокаций называется такой численный метод дискретизации интегрального (14) при котором множество внутренних узлов совпадает с множеством внешних узлов, то есть . Из вида уравнения (14) отраженное поле следует искать в виде:

 (18)

Тогда дискретизируя уравнение (14) и разделяя вещественные и мнимые части в нем получим:

 (19)

 (20)

где ,  и Dl - величина шага.

Введем обозначения:

Таким образом, мы получили систему вида Ap = f, где A ∈ M2N×2N; p, f ∈ R2N и имеют вид:

   

Заметим, что диагональные элементы матрицы A ∈ M2N×2N должны иметь вид , но так как , то ими можно пренебречь.

Так как на диагонали матрицы A ∈ M2N×2N стоят элементы большие, чем остальные элементы матрицы, то эта матрица хорошо обусловлена. Для решения данной системы линейных алгебраических уравнений можно пользоваться QL - алгоритмами.

Предложенный в данной работе метод был апробирован на конкретных тестовых геометриях, для которых удается эффективно построить распределение первой сотни собственных частот колебания в реальном масштабе времени.

Список литературы

  1. Исакович М.А. Общая акустика. - М.: Наука, 1973.
  2. Бреббия К., Теллес Ж., Вроубел Л. Методы граничных элементов. - М.: Мир, 1987.
  3. Бенерджи П., Баттерфилд Р. Методы граничных элементов в прикладных науках. - М.: Мир, 1984.



Отзывы (через Facebook):

Оставить отзыв с помощью аккаунта FaceBook:


ГОРМОНАЛЬНЫЕ ПОКАЗАТЕЛИ ПРИ РАЗНЫХ ТИПАХ ОЖИРЕНИЯ

Статья в формате PDF 112 KB...

20 07 2021 9:22:27

ИНФОРМАЦИОННЫЙ АНАЛИЗ ГНОЙНЫХ ВЫДЕЛЕНИЙ

Статья в формате PDF 115 KB...

18 07 2021 23:42:56

ЗАНЯТИЯ ФЛОРИСТИКОЙ – ЭФФЕКТИВНЫЙ ПУТЬ ФОРМИРОВАНИЯ ТВОРЧЕСКОЙ ЛИЧНОСТИ И ЭКОЛОГИЧЕСКОГО ОБРАЗОВАНИЯ

В современных условиях жизни требуются люди, знакомые с экологическими проблемами. В этой работе рассматриваются несколько нетрадиционные, но очень эффективные способы соединения экообразования детей и развития творческой индивидуальности посредством уроков флористики. Творчество флористов базируется на использовании самых необычных комбинаций искусно высушенных цветков и некоторых других частей растений, сохраняющих исходную форму и цвет. Изучая принципы флористики, ребёнок узнаёт как об экологических проблемах, так и о флоре и фауне, и учится ценить красоту и гармонию мира как источник личных черт и творческих способностей. ...

16 07 2021 1:31:21

СЕМЬЯ УЛЬЯНОВЫХ И БЛАГОТВОРИТЕЛЬНОСТЬ

Статья в формате PDF 140 KB...

28 06 2021 4:17:13

ИССЛЕДОВАНИЕ СВОЙСТВ АСПИРАЦИОННОЙ ПЫЛИ

Статья в формате PDF 255 KB...

24 06 2021 6:19:36

ПРОБЛЕМЫ ЕСТЕСТВЕННОНАУЧНОГО ОБРАЗОВАНИЯ

Статья в формате PDF 225 KB...

20 06 2021 9:43:14

СТВОЛОВЫЕ КЛЕТКИСК: ИЗОБРЕТЕНИЯ, ПАТЕНТЫ, ФИРМЫ

Статья в формате PDF 120 KB...

13 06 2021 13:17:41

ИЗМЕНЕНИЕ СОКРАТИТЕЛЬНОЙ АКТИВНОСТИ И β-АДРЕНОРЕАКТИВНОСТИ ИЗОЛИРОВАННОГО МИОМЕТРИЯ БЕРЕМЕННЫХ ЖЕНЩИН ПОД ВЛИЯНИЕМ ОЗОНИРОВАННОГО РАСТВОРА КРЕБСА

В опытах с 19 полосками миометрия, полученных от 5 женщин в конце доношенной беременности при плановом кесаревом сечении, установлено, что озонированный ( ≈0,50 мкг/мл) раствор Кребса ингибирует спонтанную сократительную активность миометрия и существенно уменьшает стимулирующий эффект адреналина, т.е. снижает его α-адренореактивность. Это объясняет эффективность озонотерапии при угрозе прерывания беременности и дискоординированной родовой деятельности. ...

11 06 2021 1:24:56

Краснощекова Галина Алексеевна

Статья в формате PDF 177 KB...

10 06 2021 4:55:17

Еще:
Обзоры -1 :: Обзоры -2 :: Обзоры -3 :: Обзоры -4 :: Обзоры -5 :: Обзоры -6 :: Обзоры -7 :: Обзоры -8 :: Обзоры -9 :: Обзоры -10 :: Обзоры -11 ::

Последовательность подготовки научной работы может быть такой:

Выбор темы. Это важный этап. Во-первых, тема должна быть интересна не только вам, но и большинству слушателей, которым вы будете её докладывать, чтобы вы видели заинтересованность в их глазах, а не откровенную скуку.

Выбор целей и задач своей научной работы. То есть, нужно сузить тему. Например, тема: «Грудное вскармливание», сужение темы: «Грудное вскармливание среди студенток нашего ВУЗа». И если общая тема мало кому интересна, то суженная до рамок собственного института или университета, она становится интересной практически для всех слушателей. Целью может стать: «Содействие оптимальным условиям вскармливания грудью детей студентов нашего ВУЗа», а задачей — доказать, что специальные условия, созданные для кормящих студенток, не помешают их успеваемости, но уменьшат количество пропусков, академических отпусков и способствуют выращиванию здоровых детей — нашего будущего. Понятно, что эта тема подходит для студентов медицинских и педагогических ВУЗов, но и в других учебных учреждениях можно найти темы, интересные всем.

Разработать методы исследования и сбора информации. В случае с естественным вскармливанием, скорее всего, это будет анкетирование студенток, имеющих детей.

Систематизировать материал и подготовить презентацию.

Подготовиться к выступлению.

Выступить и получить: награду, удовольствие и опыт, чтобы в следующем году выступить ещё лучше и сорвать шквал аплодисментов, стать узнаваемым, а значит — более конкурентоспособным!