IT-Reviews    

ОЦЕНКА ЭФФЕКТИВНОСТИ ФОТОПРЕОБРАЗОВАНИЯ В КРЕМНИЕВЫХ СОЛНЕЧНЫХ ЭЛЕМЕНТАХ С УЧЕТОМ РЕКОМБИНАЦИОННЫХ И ТЕПЛОВЫХ ПОТЕРЬ ЭНЕРГИИ

c78089d0
Ленченко В.М. Логинов Ю.Ю. Мозжерин А.В. Эффективность фотопреобразования света в электрический ток ограничено рекомбинационными, тепловыми и другими потерями энергии в структурах солнечных элементов (СЭ). Уравнения, описывающие потери, уточнены с учетом рассредоточения омических потерь в лицевом слое (ЛС). Впервые проведена оценка тепловых потерь, обусловленных эффектом Пельтье, в контактах электрической цепи СЭ. Статья в формате PDF 1164 KB

В настоящее время наиболее хорошо отработана технология СЭ на базе p-Si с n+ лицевым слоем. Производство СЭ поставлено на промышленную основу, что обеспечивает им конкурентоспособность по сравнению с СЭ на гетероструктурах. Эффективность преобразования света в электричество у таких СЭ не превышает 20 % при теоретическом пределе около 30 %.

Если эффективность базовой области СЭ достигла своего технологического предела: здесь минимизированы рекомбинационные потери, в том числе на поверхности тыльного контакта за счет изготовления его в виде изотипного p+ -p- - перехода, то относительно лицевого n+ - слоя пока не предложено однозначных методов минимизации рекомбинационных и тепловых потерь фототока.

Обсудим эту проблему, считая, что именно за счет повышения параметров лицевого слоя можно увеличить КПД СЭ в целом на несколько процентов.

Уравнения баланса

Для расчета вольтамперной характеристики (ВАХ) СЭ используем следующие уравнения переноса носителей тока:

 (1)

 (2)

Здесь jn и jp - потоки электронов и дырок, Δn и Δp, gn и gp, τn и τp - их неравновесные концентрации, скорости генерации и времена жизни носителей тока, соответственно.

Эти же уравнения могут быть представлены также и в интегральной форме:

Jn = Gn - Rn - Jns,

 Jp = Gp - Rp - Jps. (3)

Здесь Jn и Jp - потоки электронов и дырок через p-n+ - переход, Jns и Jps - их рекомбинационные потоки на внешней поверхности СЭ (электронов - на тыльный контакт, дырок - на лицевую поверхность), Gn и Gp, Rn и Rp - скорости генерации и рекомбинации электронов в p-базе, дырок - в лицевом n+ - слое.

Аналогичные уравнения могут быть записаны и для баланса энергии фотона в структурах СЭ.

 (4)

Здесь:

 (5)

- общий поток энергии излучения в СЭ;

 (6)

- поток энергии нефотоактивной части излучения. Эта часть излучения поглощается в структурах СЭ за счет излучения фотонов, также на тыльных электродах и примесных атомах (εg - ширина запрещенной зоны);

 (7)

- кинетическая энергия фоточастиц, термолизация которых приводит к нагреву материала СЭ (QT - энергия термолизации);

 (8)

- энергия, выделяемая при рекомбинации неравновесных носителей заряда (ННЗ);

 (9)

- выделяемая энергия в p-n-переходе, Vnp - высота p-n-перехода в рабочем режиме;

 (10)

- омические потери в n+ - канале, J(φ) - фототок, Δv = φ0 - v - падение напряжение в канале освещаемой площадки СЭ до собирающего электрода; J(V + Vk), V - выходное напряжение, Vk - контактная разность потенциалов полупроводник - электроды, определяемая эффектом Пельтье.

Фрагмент СЭ и схема измерений ВАХ показаны на рисунке а. Здесь: 1 - базовая p-область СЭ; 2 - высоколегированный тонкий слой n+ -Si; 3 - высоколегированный слой p+ -Si; 4 - p-n+ - переход; 5 - собирающий электрод; 6 - металлизация тыльного электрода; 7 - электрическая цепь измерения; 8 - нагрузочное сопротивление rн. Зонная структура СЭ в рабочем режиме отражена на рисунке б. Где μn и μp - уровни Ферми в n+ и p - областях,

qv = μn - μp, εcn - εvn = εcp - εvp = εg,

εcn - μn + μp - εvp = qVk, εcp - εcn = qVnp,

V′ - падение напряжения во внешней цепи с учетом омических потерь в n+ - слое.

Фрагмент структуры СЭ, схема измерений ВАХ и зонная структура СЭ в рабочем режиме

Замечая, что согласно (3)

R = G - J, R = Rn + Rp,

J = Jn + Jp + Jps, G = Gn + Gp (11)

из уравнений (4) - (8) находим:

 (12)

В режиме холостого хода, когда J = 0 и V = Vхх,, имеем Qρ = 0 и  и следовательно

 (13)

Здесь  - высота p-n+ перехода СЭ в термодинамическом равновесии, определяемся уравнением [1]

 (14)

где q - элементарный заряд, Na, Nd, ni - концентрации соответственных акцепторов в базовой области и доноров в ЛС.

Независимо от того является ли контакт омическим или нелинейным при прохождении тока на нем выделяется тепловая энергия, известная как теплота Пельтье:

 (15)

здесь коэффициент Пельтье (П) может быть оценен по формуле [2]

 (16)

для n-полупроводника и подобной формулой для p-полупроводника с заменой «n» на «p» и zn на zp, где zn и zp - плотности состояний электронов и дырок, σ = -½ для кремния.

Формула (16) справедлива для невырожденного полупроводника. В нашем случае - для базовой области, в которой концентрация дырок p ≈ 1016 см-3 и

 (17)

Для zp ≈ 1019 см-3 получаем Пp ≈ 0,23 В.

Что касается ЛС, то здесь концентрация электронов достигает 1020-1021 см-3 и, следовательно, полупроводник вырожден. Коэффициент Пельтье вырожденного полупроводника отрицателен и мал (П < kT/q ≈ 0,026 В). Тепло выделяется на контактах базы: на тыльном и на границе с p-n+ - переходом. Это проявляется в потере напряжения в цепи СЭ порядка П ≈ 0,23 В, что существенно.

Влияние рассредоточенности омических потерь в ЛС на ВАХ СЭ и потери мощности фототока в их структурах

Фототок J(φ) в лицевом слое (ЛС) СЭ возрастает, а напряжение φ падает от середины ЛС.

Когда J = 0, а φ = φ0, по направлению к электродам, где φ = V. Это описывается дифференциальными уравнениями [3-5]:

    (18)

Здесь 0 ≤ x ≤ l1, l1 - протяженность собирающего канала (n+ - канала ЛС), ρ - его удельное сопротивление, w - эффективная толщина, l2 - протяженность собирающего электрода;

 (19)

- плотность фототока через p-n-переход. Ниже

  

где l1·l2 - освещаемая площадь СЭ, jν и j0 плотности фото- и обратного темнового токов через p-n+ - переход.

Как показано в [5] интегрирование уравнений (18) приводит к следующему выражению для фототока в ЛС:

 (20)

где

 (21)

где  - омическое сопротивление участка, 0 ≤ x ≤ l1 - лицевого слоя.

Омические потери в n+ - канале следует вычислять по формуле

 (22)

Здесь также как и в (21) потенциал φ0 должен быть определен независимым путем. В частности из второго уравнения (18) находим

 (23)

где l1, l2 - геометрические параметры n+ - канала: ρ - удельное сопротивление, J(x) - фототок в канале на расстоянии х от середины освещаемой площадки СЭ по направлению к электроду.

В приближении малых омических потерь следует:

 и  (24)

Значения для ΔVρ, полученные в [3]:

 J ≡ J (V). (25)

С учетом того, что собирающие электроды СЭ имеют П-образный вид, выражения (24) и (25) обобщаются: ΔVρ ≈ βJr, где
β - эмпирический параметр (0,33 ≤ β ≤ 0,5). В этом приближении φ0 = V + ΔVρ и уравнение (20) приводится к виду:

 (26)

где  

В [3,4,6] уравнение (26) отличается от нашего, тем что в нем 2β = 1 и F(α) ~ eα.

Тепловые потери фототока непосредственно в p-n+ -переходе определяются по формуле:

 (27)

В приближении ΔVρ << V оценки Qnp можно производить по более простой формуле

 (28)

Что касается рекомбинационных потерь QRn в базовой области и QRp - в ЛС, то их можно определить по формуле (8):

 (29)

или из уравнений

 (30)

Здесь Δn(x) и Δp(x) должна быть решениями уравнений (1) и (2) при соответствующих граничных условиях:

Jn(xn + ln) = 0, Jn(xn) = Jnv; (31)

Jp(xn) = Jpv, Jp(0) = Jps, (32)

записанных с учетом того, что поток электронов через тыльный контакт практически отсутствует (контакт с изотипным p-p+ переходом), а в ЛС - поток Jps определяется поверхностной рекомбинацией. В приближении Jns = 0 и ln > Ln решение уравнения (18) известно [7]:

 (33)

При αvln >> 1, f << 1

 (34)

Эти выражения совместно с уравнением (29), в котором

решают проблему оценок QRn. Что касается потерь QRp = Gp - Jp, то для их оценок необходимо учесть особенности ЛС: наличие в нем тянущего поля и рекомбинации дырок на внешней поверхности ЛС. Ниже мы анализируем Jp, Rs с учетом этих факторов.

Эффект сильного поля в лицевом слое СЭ: влияние его на R-потери и эффективность фотопреобразования ЛС

Тянущее поле в ЛС создается как градиентом доноров:

 (35)

так и внешним источником - контактными зарядами на ПС и в диэлектрике (Ee).

Поток дырок jp имеет две составляющие

 (36)

Первый член - это дрейфовый поток, второй - диффузионный.

Условием сильного поля в ЛС может служить неравенство

 ΔtE << ΔtD, (37)

где ΔtE - дрейфовое время пролета дырок ЛС.

где lp - толщина ЛС,  - подвижность дырок в ЛС,  - диффузионное время пролета расстояния lp.

Из (37) следует

 (38)

Замечая, что Dpp ≈ 2,5∙10-2 эВ и учитывая, что lp в СЭ n+-p-Si типов lp ≤ 5∙10-5 см, получаем E >> 103 В/см. Непосредственно в p-n+- переходе E ≥ 105 В/см, а в узком лицевом слое поле на порядок меньше, но условие (38) выполняется. Это означает, что в ЛС перенос дырок осуществляется под действием тянущего поля и поэтому

 (39)

При этом уравнение (2) с учетом того, что

 (40)

где αv - коэффициент поглощения света, переписывается в виде

 (41)

(  )

Интегрирование этого уравнения дает:

 (42)

Из граничного условия

 при х = lp

находим:

 (43)

и

 (44)

Поток дырок в p-n переходе можем определить с помощью уравнения (2) в интегральной форме:

 (45)

Здесь

 (46)

В результате из (45), (44) и (46) находим

 (47)

Уравнение (44) приводит к следующему выражению для jps(0):

 (48)

Из (47) и (48) находим следующее отношение потоков дырок из ЛС на ПС и в n+ -p - переход.

 (49)

Условиями малости рекомбинационных потерь является χ > > 1 или

 (50)

Обычно Ns ≈ 1012-1013 см-2,   см3/с и  , поэтому μpE >> 103-105 см/с, что практически реализуется в ЛС современных СЭ.

Список литературы

  1. Бонч-Бруевич В.Л., Калашников С.Г. Физика полупроводников. - М.: Наука, 1977.
  2. Зеегер К. Физика полупроводников. - М.: Мир, 1977.
  3. Васильев А.М., Ландеман А.П. Полупроводниковые фотопреобразователи. - М.: Советское радио, 1971.
  4. Фаренбрух А., Бьюб Р. Солнечные элементы. Теория и эксперимент. - М.: Энергоатомиздат, 1987.
  5. Ленченко В.М., Логинов Ю.Ю., Малков Д.О. Влияние омических потерь в лицевом n+ слое на выходные характеристики СЭ n+-p-типов // Вестник КрасГУ. Физико-математические науки. - 2005, № 4. - С.33-39.
  6. Преобразование солнечной энергии / под ред. Б. Серафима. - М.: Энергоатомиздат, 1982.
  7. Зи С. Физика полупроводниковых приборов, т.2. - М.: Мир,1984.



Отзывы (через Facebook):

Оставить отзыв с помощью аккаунта FaceBook:

ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ УПРАВЛЕНИЯ

Статья в формате PDF 226 KB...

23 06 2020 17:19:57

ГЛУЩЕНКО ЛЮДМИЛА ФЁДОРОВНА

Статья в формате PDF 175 KB...

19 06 2020 5:45:52

СОВРЕМЕННЫЕ ПОДХОДЫ К ИММУНИЗАЦИИ НАСЕЛЕНИЯ

Статья в формате PDF 112 KB...

18 06 2020 5:37:19

КАЗАНСКИЙ КРАЙ: ЯЗЫК ПАМЯТНИКОВ XVI-XVII ВЕКОВ

Статья в формате PDF 282 KB...

14 06 2020 23:27:11

ДАШКЕВИЧ ЮРИЙ МИХАЙЛОВИЧ

Статья в формате PDF 64 KB...

03 06 2020 6:51:40

РАЦИОНАЛЬНОЕ НЕДРОПОЛЬЗОВАНИЕ – ПУТЬ К ПРОЦВЕТАНИЮ

Статья в формате PDF 213 KB...

01 06 2020 22:18:56

РЫНОК ТРУДА И ТРУДОУСТРОЙСТВО МОЛОДЫХ СПЕЦИАЛИСТОВ

Статья в формате PDF 145 KB...

27 05 2020 23:24:38

АКТИВНОСТЬ ФОСФОЛИПАЗЫ А2 И СОСТОЯНИЕ ПРОЦЕССОВ ПЕРЕКИСНОГО ОКИСЛЕНИЯ ЛИПИДОВ В ПЕРИФЕРИЧЕСКОЙ КРОВИ У БЕРЕМЕННЫХ С ГЕРПЕС-ВИРУСНОЙ ИНФЕКЦИЕЙ

В работе изучено состояние процессов перекисного окисления липидов и содержание фосфолипазы А2 в периферической крови беременных III триместра с обострением герпес-вирусной инфекции в зависимости от титра антител IgG к вирусу простого герпеса 1 типа. Установлено, что обострение герпес-вирусной инфекции в период гестации способствует активации процессов перекисного окисления липидов, регистрируемого по содержанию Т Б К-активных продуктов (малонового диальдегида), повышению содержания фосфолипазы А2, наиболее выраженное при титре антител IgG к В П Г-1 1:12800 и является причиной деструктивных процессов в составе липидов эритроцитов. ...

26 05 2020 18:37:15

ИСТОРИЯ РАЗВИТИЯ ИСТИННЫХ УЧИТЕЛЕЙ

Статья в формате PDF 104 KB...

11 05 2020 22:34:36

ПОНЯТИЕ И ПРОБЛЕМЫ ПРОТИВОДЕЙСТВИЯ КИБЕРТЕРРОРИЗМУ

Статья в формате PDF 262 KB...

24 04 2020 4:35:43

ЛИТЕРАТУРНОЕ ОБРАЗОВАНИЕ ДЕТЕЙ: КРИЗИС ЧТЕНИЯ

Статья в формате PDF 265 KB...

23 04 2020 4:15:47

ДЕСТРУКЦИЯ ЭРИТРОЦИТОВ В КОСТНОМОЗГОВЫХ ЭРИТРОКЛАЗИЧЕСКИХ КЛАСТЕРАХ

В костном мозге больных гематологическими заболеваниями выявлено значительное количество эритроклазических кластеров, характеризующихся экзоцитарным лизисом входящих в них эритроцитов кластерообразующими миелокариоцитами разных видов, включая эритрокариоциты. Содержание эритроклазических кластеров с происходящим в них экзоцитарным лизисом эритроцитов варьировало от 21% от всех эритроклазических кластеров в костном мозге больных апластической анемией до 81% в костном мозге больных в активной фазе острого лимфобластного лейкоза, что свидетельствует об интенсивности лизиса в них эритроцитов. С наибольшей интенсивностью лизис эритроцитов происходил в костном мозге больных в активную фазу острого лимфобластного лейкоза и больных хроническим миелолейкозом. При этом в момент исследования подвергались деструкции в эритроклазических кластеров десятки тысяч эритроцитов в мкл костного мозга. Эти данные подтверждают представление о костном мозге как органе гемолиза. ...

22 04 2020 3:13:52

Гиперболическая модель задачи о фазовом переходе

Статья в формате PDF 117 KB...

14 04 2020 18:42:22

ПРОБЛЕМА ФОРМИРОВАНИЯ КОМПЕТЕНТНОСТЕЙ В УЧЕБНО-ВОСПИТАТЕЛЬНОМ ПРОЦЕССЕ НАЧАЛЬНОЙ ШКОЛЫ

Стратегия социально-экономического развития Р Ф поставило на государственном уровне вопрос о достижении нового качества общего образования – готовности и способности учащихся к непрерывному образованию. В настоящее время в соответствии с основными тенденциями развития современного образования меняются целевые, процессуальные и результативные компоненты учебно-воспитательного процесса и прежде всего в начальной школе. ...

13 04 2020 18:31:46

ПРИМЕНЕНИЕ СВЕРХПРОВОДНИКОВ В ЭНЕРГЕТИКЕ

Статья в формате PDF 267 KB...

11 04 2020 0:39:20

ПОЛИАРИЛАТЫ С ПОВЫШЕННОЙ ХИМИЧЕСКОЙ УСТОЙЧИВОСТЬЮ

Статья в формате PDF 109 KB...

04 04 2020 21:20:59

МЕТОДЫ УПРОЧНЕНИЯ ИОННО-ПЛАЗМЕННОЙ ОБРАБОТКОЙ

Статья в формате PDF 259 KB...

02 04 2020 5:26:49

ОБЩИЙ УХОД ЗА БОЛЬНЫМИ (учебник)

Статья в формате PDF 107 KB...

30 03 2020 17:21:47

ПАРАЛЛЕЛЬНЫЙ АЛГОРИТМ (2,1)-МЕТОДА ПЕРЕМЕННОГО ШАГА

Статья в формате PDF 505 KB...

27 03 2020 9:41:56

ТРАНСНАЦИОНАЛИЗАЦИЯ РОССИЙСКОГО БИЗНЕСА

Статья в формате PDF 320 KB...

26 03 2020 13:22:24

ГРИПП. КЛИНИЧЕСКАЯ СИМПТОМАТИКА

Статья в формате PDF 146 KB...

23 03 2020 1:11:50

СЕМЬЯ УЛЬЯНОВЫХ И БЛАГОТВОРИТЕЛЬНОСТЬ

Статья в формате PDF 140 KB...

22 03 2020 14:36:51

РОЛЬ ГОСУДАРСТВА В&#8239;УСЛОВИЯХ ГЛОБАЛИЗАЦИИ

Статья в формате PDF 277 KB...

17 03 2020 14:21:26

Перспективы использования электрофизических методов при освоении месторождений минерального сырья

На основе анализа литературных источников показана необходимость создания эффективных методов переработки руд цветных металлов. Описано отрицательное воздействие горнообогатительного производства на окружающую среду. Рассмотрены проблемы освоения месторождений сырья и предложены пути их решения. Приведена схема рационального освоения минеральных ресурсов рудного месторождения с применением разрядноимпульсных методов. Обоснована возможность использования разрядноимпульсных воздействий в обогатительных процессах, что позволит повысить полноту извлечения полезных компонентов при переработке минерального сырья. Выделены ограничения применения импульсных методов. Установлено, что разрядноимпульсные методы интенсифицируют избирательное раскрытие минеральных ассоциаций во всем диапазоне исходных классов крупности. Эти методы эффективны в комбинированных схемах переработки труднообогатимых руд сложного состава. Применение комбинированных схем позволит сократить на 10–15 % время измельчения до выхода контрольного класса. ...

15 03 2020 17:14:49

КРИПТОГРАФИЯ – ОТ ИЗБРАННЫХ К ШИРОКИМ МАССАМ

Статья в формате PDF 114 KB...

13 03 2020 23:49:20

ТЕРАПЕВТИЧЕСКАЯ ИГРА КАК МЕТОД ОБУЧЕНИЯ ПАЦИЕНТОВ

Статья в формате PDF 241 KB...

09 03 2020 17:22:21

ОСОБЕННОСТИ ФОРМИРОВАНИЯ ВЕГЕТАТИВНОГО ГОМЕОСТАЗА У ДЕТЕЙ ШКОЛЬНОГО ВОЗРАСТА В РАЗЛИЧНЫХ РЕГИОНАХ СИБИРИ

С целью изучения экологических и этнических особенностей адаптационно-компенсаторных механизмов у детей различных популяционных групп были обследованы 208 школьников 7-15 лет, проживающие в г. Красноярске и в Эвенкии. Проведена комплексная клинико-инструментальная оценка вегетативного статуса по показателям кардиоинтервалографии с клиноортостатической пробой. Показано, что в популяции жителей Эвенкии этническая принадлежность (дети эвенков) является одним из факторов, формирующих вегетативный гомеостаз. Они отличаются от детей пришлого населения Эвенкии по напряжению вегетативных механизмов регуляции. Полученные результаты необходимы для разработки региональных критериев здоровья, проведения коррекционных и профилактических мероприятий на донозологическом этапе. ...

08 03 2020 1:39:49

Статистические закономерности хронологии космонавтики

В статье описана и исследована методами математической статистики хронологическая аномалия космонавтики. Обоснован биномиальный закон распределения числа хронологических совпадений. Показано, что вероятность случайного появления рассматриваемых совпадений весьма мала. Метод исследования, применяемый в работе, преимущественно основан на статистическом анализе хронологии при помощи параметризации дат событий и проверки соответствующего критериального свойства. Используются параметры: условные номера дней с начала летоисчисления N, с начала года n и год Г. Основными информативными параметрами являются интервалы времени между событиями. Обоснован биномиальный закон распределения числа хронологических совпадений. Показано, что вероятность случайного появления рассматриваемых совпадений весьма мала. ...

07 03 2020 10:55:23

О НЕКОТОРЫХ ПРОБЛЕМАХ МОЛОДОЙ КАРЕЛЬСКОЙ ПИСЬМЕННОСТИ

Статья посвящена проблемам становления новейшей лексики и орфографии новописьменного карельского языка. В статье отражены современные процессы развития лексикона, а также представлена к решению проблема так называемых послеложных падежей (элатива, аблатива, комитатива, аппроксиматива и терминатива). ...

01 03 2020 12:35:42

СЛИНКИН СЕРГЕЙ ВИКТОРОВИЧ

Статья в формате PDF 161 KB...

26 02 2020 1:34:30

ПОЛИТРАВМА В ДОРОЖНО-ТРАНСПОРТНЫХ ПРОИСШЕСТВИЯХ

Статья в формате PDF 244 KB...

23 02 2020 5:38:34

Изучение эффективности галавтилина у больных рожей

Статья в формате PDF 115 KB...

15 02 2020 5:55:12

МАТЕРИАЛЬНОЕ СТИМУЛИРОВАНИЕ ЗА РУБЕЖОМ И В РОССИИ

Статья в формате PDF 123 KB...

08 02 2020 22:30:55

Еще:
Обзоры -1 :: Обзоры -2 :: Обзоры -3 :: Обзоры -4 :: Обзоры -5 :: Обзоры -6 :: Обзоры -7 :: Обзоры -8 :: Обзоры -9 :: Обзоры -10 :: Обзоры -11 ::

Последовательность подготовки научной работы может быть такой:

Выбор темы. Это важный этап. Во-первых, тема должна быть интересна не только вам, но и большинству слушателей, которым вы будете её докладывать, чтобы вы видели заинтересованность в их глазах, а не откровенную скуку.

Выбор целей и задач своей научной работы. То есть, нужно сузить тему. Например, тема: «Грудное вскармливание», сужение темы: «Грудное вскармливание среди студенток нашего ВУЗа». И если общая тема мало кому интересна, то суженная до рамок собственного института или университета, она становится интересной практически для всех слушателей. Целью может стать: «Содействие оптимальным условиям вскармливания грудью детей студентов нашего ВУЗа», а задачей — доказать, что специальные условия, созданные для кормящих студенток, не помешают их успеваемости, но уменьшат количество пропусков, академических отпусков и способствуют выращиванию здоровых детей — нашего будущего. Понятно, что эта тема подходит для студентов медицинских и педагогических ВУЗов, но и в других учебных учреждениях можно найти темы, интересные всем.

Разработать методы исследования и сбора информации. В случае с естественным вскармливанием, скорее всего, это будет анкетирование студенток, имеющих детей.

Систематизировать материал и подготовить презентацию.

Подготовиться к выступлению.

Выступить и получить: награду, удовольствие и опыт, чтобы в следующем году выступить ещё лучше и сорвать шквал аплодисментов, стать узнаваемым, а значит — более конкурентоспособным!