IT-Reviews    

ПРОБЛЕМЫ ИДЕНТИФИКАЦИИ МОДЕЛЕЙ РАСПРЕДЕЛЕНИЯ СЛУЧАЙНЫХ ВЕЛИЧИН С ПРИМЕНЕНИЕМ СОВРЕМЕННОГО ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ

Бахрушин В.Е. Рассмотрены некоторые проблемы идентификации моделей распределения данных, при использовании современного математического аппарата для решения этой задачи. Показано, что использование методов нелинейной оптимизации для идентификации моделей приводит к улучшению результатов идентификации, но одновременно, изменяет формальную постановку задачи. Выделено три группы проблем, связанных с выбором критериев согласия, их критических значений и проверкой адекватности получаемых моделей. Проанализированы возможные подходы к решению этих проблем. Статья в формате PDF 481 KB адекватностькритерий согласияоптимизацияидентификациямодельраспределение данных Бахрушин В.Є. Методи аналізу даних. - Запоріжжя: КПУ, 2011. -268 с. Айвазян С.А., Буштабер В.М., Енюков И.С., Мешалкин Л.Д. Прикладная статистика. Классификация и снижение размерностей. - М.: Финансы и статистика, 1989. - 607 с. Емельянов А.А., Власова Е.А., Дума Р.В. Имитационное моделирование экономических процессов. - М.: Финансы и статистика, 2002. - 368 с. Логанина В.И., Федосеев А.А. Статистические методы контроля и управления качеством продукции. -М.: Феникс, 2007. - 219 с. Румшиский Л.З. Математическая обработка результатов эксперимента. - М.: Наука. ФИЗМАТЛИТ, 1971 - 192 с. Орлов А.И. Прикладная статистика. - М.: Экзамен, 2006. - 672 с. Боровков А.А. Математическая статистика. Оценка параметров. Проверка гипотез. - М.: Наука, 1984. - 472 с. Орлов А.И. О критериях согласия с параметрическим семейством // Заводская лаборатория. - 1997. - Т.63, № 5. - С. 49-50. Durbin, J. Distribution theory for tests based on the sample distribution function. -SIAM, 1973. - 74 p.; Мартынов Г.В. Статистические критерии, основанные на эмпирических процессах, и связанные с ними вопросы // Итоги науки и техники: Сер. Теория вероятностей. Математическая статистика. Теоретическая кибернетика. - М.: ВИНИТИ, 1992. - Т. 30. - С.3 - 112; Лемешко Б.Ю. Об ошибках, совершаемых при использовании непараметрических критериев согласия // Измерительная техника. - 2004. - № 2. - С. 15-20. Бахрушин В.Е., Журавель С.В., Игнахина М.А. Эмпирические функции распределения результатов тестирования выпускников школ // Управляющие системы и машины. - 2009. - № 2. - С. 82-84.

Задача идентификации моделей распределения выборок часто встречается в различных прикладных исследованиях. В частности, большинство параметрических методов статистического анализа данных предполагает предварительную проверку гипотезы о нормальности закона распределения исследуемых данных [1]. Еще одним примером являются параметрические методы классификации без обучения, которые исходят из того, что распределение данных можно представить в виде смеси распределений известного типа (как правило, нормальных) и включают этап идентификации функции распределения по исходным данным [2]. Знание закона распределения часто бывает необходимым при построении имитационных моделей сложных систем [3], при разработке статистических методов контроля качества на производстве [4], для создания методик обработки данных [5] и т.п.

Традиционные методы идентификации были разработаны в первой половине XX в. и не предполагают необходимости использования современной вычислительной техники. Ее появление и широкое использование в статистических исследованиях не только позволило существенно ускорить и облегчить процедуру идентификации, но и создало потенциальную возможность использовать для решения этой задачи более сложные математические методы, в частности методы решения задач нелинейной оптимизации. Однако их применение может изменять формальную постановку задачи идентификации, что создает ряд новых проблем. 

Параллельно с развитием методов идентификации моделей распределения развивались общие методы идентификации математических и регрессионных моделей. При этом сложилась ситуация, когда однотипные задачи в разных областях решаются по-разному.

Целью данной работы является формулировка некоторых проблем, возникающих при применении современных математических методов для решения задачи идентификации законов распределения случайных величин, и анализ возможных путей их решения.

Традиционные методы идентификации законов распределения

Обычная процедура идентификации законов распределения случайных величин предполагает два основных этапа исследования - выдвижение гипотез о законе распределения и их проверку на основе тех или иных статистических критериев [1, 6]. При этом формальная постановка задачи на втором этапе может быть различной. В статистике ее обычно формулируют как проверку нулевой гипотезы о том, что имеющиеся данные соответствуют некоторому полностью определенному закону распределения либо распределению, принадлежащему некоторому параметрически заданному семейству, параметры которого необходимо оценить в процессе идентификации (простая и сложная гипотезы) [7]. Для решения этой задачи по имеющимся эмпирическим данным вычисляют значение соответствующего критерия и сравнивают его с критической величиной для заданного уровня значимости. При этом возможны ошибки принятия неправильной нулевой гипотезы или отклонения правильной. Разрабатывая критерии, эти ошибки стремятся минимизировать, но сделать их равными нулю принципиально невозможно. К тому же снижение вероятности одной из ошибок ведет увеличению вероятности другой. Наиболее часто используют критерии типа омега-квадрат, Колмогорова-Смирнова и хи-квадрат.

Критерий омега-квадрат был предложен в 1928-1930 г. Х. Крамером и Р. фон Мизесом, и на сегодняшний день он является наиболее мощным из непараметрических критериев согласия [6]. Его расчетное значение определяют [1] по формуле:

 

где F(xi) - значение теоретической функции распределения в точке xi; n - объем выборки; i - индекс, используемый для нумерации значений ее элементов, упорядоченных в порядке возрастания. При n > 40 критические значения критерия можно определить по специальным таблицам.

Критерий Колмогорова-Смирнова был разработан в 1930-х г. А.Н. Колмогоровым и Н.В. Смирновым. Его расчетное значение для двусторонней гипотезы определяют [1] по формулам:

а для односторонней Dn =D(1)n.

Критерий Колмогорова-Смирнова несколько уступает по мощности критерию омега-квадрат [6], однако его преимуществом является то, что при n > 35 критические значения можно определять не по таблицам, а рассчитывать по асимптотической формуле:

где α - уровень значимости.

В обоих случаях критические значения зависят от выбранного вида теоретической функции распределения и способа оценивания ее параметров. Формула (3) и таблицы дают критические значения для случая, когда параметры определяются независимо от исследуемой выборки. Если же их рассчитывают непосредственно по выборке (например, определяют как выборочные среднее арифметическое и стандартное отклонение для нормального закона распределения), то критические значения должны быть существенно уменьшены.

Критерий хи-квадрат предложен в 1900 г. К. Пирсоном. В отличие от двух предыдущих, для его использования производят предварительную группировку данных по интервалам равной ширины. Значение критерия рассчитывают [1] по формуле:

(4)

где νі - абсолютные частоты для k классов; - теоретические вероятности попадания данных в соответствующий интервал для выбранного распределения; n - общее число наблюдений. Число степеней свободы берут равным k - r - 1, где r - число параметров модели распределения. В частности, при расчете параметров модели по интервальному вариационному ряду число степеней свободы берут равным k - 2 для биномиального і k - 3 - для нормального распределения.

Наряду с этим возможен другой подход к формальной постановке задачи на втором этапе идентификации. В соответствии с общей методологией идентификации математических моделей она может быть сформулирована как подбор модели, которая в некотором смысле наилучшим образом описывает имеющийся набор эмпирических данных. Для решения этой задачи необходимо задать тип модели и подобрать ее параметры минимизацией заданного целевого функционала. В качестве функционала обычно используют сумму квадратов остатков модели, сумму их модулей или максимальный по модулю остаток. При таком подходе к идентификации моделей используются другие критерии адекватности, которые будут рассмотрены ниже. Во многих реальных задачах такая постановка задачи может быть более корректной, чем традиционная, поскольку предполагается, что любая модель лишь приближенно отображает реальный объект исследования. Поэтому не ставится вопрос о ее правильности, а проверяется лишь ее адекватность, т.е. возможность использования анализируемой модели для решения некоторой конкретной задачи.

Проблема определения критических значений

Первая из проблем связана с возможностью существенного уменьшения расчетных значений для критериев типа омега-квадрат и Колмогорова-Смирнова за счет оптимизации параметров подбираемых моделей распределения путем решения задачи минимизации критериального показателя.

Из (1) видно, что критическое значение критерия омега-квадрат по смыслу является максимально допустимой (при заданном уровне значимости) суммой квадратов отклонений теоретической функции распределения (т.е. получаемой в результате идентификации модели распределения) от эмпирической. Аналогично, из (2) следует, что критическое значение критерия Колмогорова-Смирнова является предельно допустимым значением максимального отклонения теоретической функции распределения от эмпирической.

Практика применения рассматриваемого подхода для идентификации моделей распределения различных типов данных показывает, что решение задачи минимизации критериальных показателей (1, 2, 4) во многих случаях позволяет существенно снизить их значения по сравнению с моделями, параметры которых определяются непосредственным расчетом по выборочным данным. В качестве примера на рис. 1 показаны результаты подбора модели нормального распределения для показателей рейтинга ТОП-200 вузов Украины - 2011.

Рис. 1. Функция распределения рейтинга ТОП-200 вузов Украины

Модель Норм_1 была получена при использовании в качестве параметров распределения выборочных среднего арифметического и стандартного отклонения, а модель Норм_2 - минимизацией максимального по модулю остатка модели при использовании параметров Норм_1 в качестве начального приближения.

В результате оптимизации расчетное значение критерия Колмогорова - Смирнова удалось снизить с 2,06 до 1,19, а максимальный остаток с 0,146 до 0,084. При этом оценка математического ожидания изменилась от 16,6 до 17,8, а оценка стандартного отклонения - от 5,9 до 8,8. Следует отметить, что полученное для оптимизированной модели расчетное значение критерия меньше, чем критическое значение для простой гипотезы, но превышает критическое значение (0,895 при уровне значимости 0,95 [6]) для случая, когда в качестве оценок параметров нормального распределения берут выборочные среднее арифметическое и стандартное отклонение. Поэтому в рассматриваемом случае в качестве более адекватной была выбрана модель однородного логнормального распределения, для которой расчетное значение критерия было близко к 0,3.

Как указывалось выше, критические значения рассмотренных критериев зависят от способа задания параметров модели распределения. Это связано с тем, что формально мы переходим от проверки простой гипотезы (соответствия выборки заданному закону распределения) к сложной (соответствия выборки параметрически заданному закону распределения, параметры которого необходимо определить в ходе этой проверки). В этом случае изменяется распределение статистики используемого критерия [8, 9],
которая зависит не только от способа оценивания параметров, но и от выбора модели распределения. Поэтому можно ожидать, что в случае, когда параметры определяют не прямым расчетом по выборочным данным, а путем минимизации некоторого целевого функционала, критические значения могут оказаться меньшими, чем величины, рекомендуемые при определении параметров по выборке, и, тем более чем значения, рекомендуемые для проверки простой гипотезы. Дополнительные проблемы могут быть связаны с неустойчивостью процедуры минимизации, что характерно для сложных моделей распределения, и с возможностью выбора различных алгоритмов и начальных приближений для этой процедуры.

В связи с этим иногда делается вывод, что развитие методов оценивания согласия эмпирических выборок с параметрическими семействами распределений относится к тупиковым направлениям, поскольку ни одна реальная выборка не может в точности соответствовать никакому параметрическому семейству [8]. Однако такой вывод, на наш взгляд, является излишне категоричным, поскольку идентификация моделей распределений реальных данных, как правило, является не самоцелью, а частью решения более сложных прикладных проблем. Теоретические законы (модели) распределения всегда являются следствием некоторых содержательных предположений. Подтверждение или отклонение гипотез о соответствии имеющихся данных той или иной модели распределения одновременно можно рассматривать, как подтверждение правильности или ложности этих исходных предположений. Во многих случаях такой вывод является более важным, чем наличие несущественных отклонений от полученной модели.

Проблема выбора критерия согласия

При решении задачи идентификации законов распределения обычно считают, что модель адекватна при заданном уровне значимости, если расчетное значение одного из критериев (1, 2, 4) не превышает соответствующего критического значения. При этом возникают две группы проблем - выбор критерия согласия и соответствие полученной модели общим критериям адекватности математических моделей.

Формально, ответ на первый вопрос дает анализ мощности рассматриваемых критериев, по результатам которого сделан вывод, что она убывает в ряду 1 → 2 → 4 [6]. Соответственно, рекомендуется выбирать для использования наиболее мощный из критериев, приемлемых для соответствующего набора данных.

Вместе с тем, этот вывод нуждается в некотором уточнении. Критерии типа омега-квадрат и Колмогорова - Смирнова базируются на сравнении эмпирической функции распределения с теоретической моделью. Одним из свойств функции распределения F(x) является [1, 7] то, что:

;

В силу этого рассматриваемые критерии значительно более чувствительны к отклонениям от теоретического закона вблизи центра распределения, чем к отклонениям вдали от него. Поэтому можно ожидать, что критерии типа омега-квадрат и Колмогорова-Смирнова будут более мощными в тех случаях, когда различие функций распределения обусловлено, главным образом, различием моментов низких порядков (математического ожидания и дисперсии).

Однако при анализе некоторых типов реальных данных, в частности при подборе моделей неоднородных распределений, важным является наличие отклонений на всем интервале вариации данных. Критерий хи-квадрат более чувствителен к отклонениям на краях области вариации данных и, соответственно, к различию моментов высоких порядков. Поэтому в ситуациях, когда такие отклонения важны для решения конкретной задачи, целесообразно проводить проверку с совместным использованием как одного из критериев (1, 2), так и критерия (4).

В частности, в работе [10] нами было показано, что при идентификации распределения результатов Единого государственного экзамена Российской Федерации по многим дисциплинам с использованием критерия Колмогорова-Смирнова можно подобрать модель однородного нормального распределения, которая удовлетворяет этому критерию, несмотря на высокие значения коэффициентов асимметрии, а в отдельных случаях и отчетливо видимую на гистограмме неоднородность выборки. В то же время расчетное значение критерия хи-квадрат при этом существенно превышает критическое для той же модели распределения. Совместное использование этих критериев позволяет получить более адекватную модель распределения в виде суммы нормально распределенных компонент.

Проблема адекватности модели

Общий подход к анализу адекватности математических и регрессионных моделей [1] предполагает необходимость использования критериев, проверяющих совокупность свойств остатков модели, которые должны подчиняться нормальному закону распределения с нулевым средним арифметическим и быть независимыми друг от друга. В то же время при идентификации моделей законов распределения свойство независимости остатков часто нарушается.

Эта проблема становится особенно актуальной при уменьшении объема исследуемых выборок, что иллюстрирует рис. 2. На нем приведены графики зависимости остатков моделей нормального распределения для двух выборок объемом 50 и 100 элементов, сгенерированных в соответствии со стандартным нормальным распределением.

Рис. 2. Графики остатков моделей нормального распределения для выборок разного объема

Параметры моделей были определены минимизацией максимального по модулю остатка. Из рис. 2 видно, что остатки не являются независимыми. Значение критерия Дарбина-Уотсона в рассмотренных случаях составляет 0,058 для выборки объемом 50 элементов и 0,35 для выборки из 100 элементов. Это подтверждает значимую корреляцию остатков моделей распределения. При этом следует отметить, что расчетные значения критерия (2) для найденных моделей существенно меньше критических, определяемых по стандартной методике, и находятся в пределах 0,2-0,5.

С формальной точки зрения возможна ситуация, когда при удовлетворении всех трех критериев (1, 2, 4) все остатки будут иметь один знак, т.е. эмпирическая выборка будет иметь незначительный сдвиг относительно рассматриваемой модели. Несмотря на выполнение критериев согласия, понятно, что эти модели (для простых законов распределения) могут быть легко улучшены изменением их параметров. Однако вопрос о существенности таких отклонений должен решаться отдельно для каждой конкретной задачи.

По нашему мнению, вопрос о целесообразности использования и области применимости общих критериев адекватности моделей в задачах идентификации законов распределения нуждается в дальнейшем исследовании. При этом в соответствии с общей методологией проверки адекватности моделей, следует исходить из способности достижения конкретных задач исследования с помощью рассматриваемой модели.

Выводы

Проведенный анализ показывает, что применение современных компьютерных технологий для решения задач идентификации законов распределения данных порождает ряд проблем, в числе которых большое значение имеют:

  • неопределенность критических значений используемых статистик в случае оценивания параметров распределений минимизацией критериальных показателей;
  • возможность совместного использования нескольких критериев согласия в случаях, когда возможно различие моментов высоких порядков теоретической модели и исследуемой выборки;
  •   вопрос о целесообразности использования и области применимости общих критериев адекватности моделей в задачах идентификации законов распределения.



Отзывы (через Facebook):

Оставить отзыв с помощью аккаунта FaceBook:

Некоторые вопросы занятости населения в крае

Статья в формате PDF 118 KB...

22 02 2020 20:52:53

ПРОГНОЗИРОВАНИЕ ЭКОНОМИЧЕСКОЙ ДЕЯТЕЛЬНОСТЬЮ ПРЕДПРИЯТИЯ И УПРАВЛЕНИЕ ЕГО РАЗВИТИЕМ

На основе системного анализа функционирования экономической деятельности промышленного предприятия введена его теоретическая кривая прогнозирования бизнеса и разработан алгоритм выхода на данную кривую в процессе стратегического управления развитием предприятия. ...

20 02 2020 11:43:47

ХОЛОДОВАЯ АДАПТАЦИЯ И АДРЕНОРЕЦЕПТОРЫ

Получено, что на 30‒й день холодовой адаптации на низкие дозы норадреналина реактивность системного давления больше контроля, а на большие дозы меньше контроля. Реактивность артерий конечности была на все дозы норадреналина меньше контроля. Нами впервые показано, что прессорное действие норадреналина на периферические артерии уменьшается на все дозы после адаптации к холоду, что способствует большему кровотоку и усилению прогрева тканей. Из данной работы следует, что дозированное действие холодного климата может способствовать уменьшению спазма артерий на норадреналин и поэтому, дозированный холод может помогать в лечении гипертонической болезни. ...

19 02 2020 0:11:20

ОБ ОСОБЕННОСТЯХ СОВРЕМЕННОЙ РУССКОЙ ФИЛОСОФИИ

Статья в формате PDF 110 KB...

18 02 2020 0:39:26

МАТЕМАТИЧЕСКАЯ МОДЕЛЬ УРОВНЯ ПСИХИЧЕСКОЙ РЕАКЦИИ ЧЕЛОВЕКА И ЕЁ ИССЛЕДОВАНИЕ

В статье описывается математическая модель, связывающая уровень психической реакции с личностными характеристиками человека и с силой информационного воздействия на него. Исследуются условия устойчивости модели методами теории автоматического управления. ...

17 02 2020 15:37:58

ТРАНСНАЦИОНАЛИЗАЦИЯ РОССИЙСКОГО БИЗНЕСА

Статья в формате PDF 320 KB...

16 02 2020 10:26:13

О ЗАКОНЕ АРХИМЕДА

Статья в формате PDF 161 KB...

11 02 2020 0:37:14

КОНФОРМАЦИОННАЯ ИЗОМЕРИЗАЦИЯ МЕТИЛБОРНОЙ КИСЛОТЫ

Статья в формате PDF 127 KB...

10 02 2020 8:21:56

Правовые аспекты эвтаназии

Статья в формате PDF 102 KB...

04 02 2020 15:25:20

АКТИВНЫЕ МЕТОДЫ ОБУЧЕНИЯ

Статья в формате PDF 249 KB...

01 02 2020 10:18:10

СТРУКТУРА ВИРУСНОЙ ПАТОЛОГИИ ЛОР-ОРГАНОВ

Статья в формате PDF 277 KB...

26 01 2020 23:11:12

ОБЩЕБИОЛОГИЧЕСКИЕ АСПЕКТЫ МОРФОФУНКЦИОНАЛЬНОГО СИНТЕЗА ПРИ ИЗУЧЕНИИ НЕРВНОЙ И СЕРДЕЧНО-СОСУДИСТОЙ СИСТЕМ МЛЕКОПИТАЮЩИХ

Авторами проведено комплексное исследование сосудистых и нервных структур всего органокомплекса брюшной полости, что позволило подтвердить общие морфологические закономерности, свойственные млекопитающим отряда хищных, выявить характерные видовые и внутривидовые особенности васкуляризации и иннервации у пушных зверей клеточного содержания. Полученные новые данные о морфологии сосудистых и нервных образований органов брюшной полости млекопитающих являются оригинальными и дают не только полное представление об изученных структурах, но позволяют морфофункционально интерпретировать адаптогенные процессы, протекающие в интегративно-координационных системах организма пушных зверей, находящихся под интенсивным антропогенным воздействием в процессе доместикации. ...

23 01 2020 15:40:46

Методы лазеротерапии при астматическом бронхите

Статья в формате PDF 110 KB...

14 01 2020 16:24:54

ИНДИВИДУАЛЬНЫЕ ОСОБЕННОСТИ ОДАРЕННЫХ УЧАЩИХСЯ

Статья в формате PDF 96 KB...

11 01 2020 12:11:37

ОПТИМИЗАЦИЯ UTRA АЛГОРИТМА МЯГКОГО ХЭНДОВЕРА СЕТИ WCDMA

Статья в формате PDF 221 KB...

07 01 2020 0:36:39

СИСТЕМА ЦЕННОСТЕЙ СОВРЕМЕННОГО УЧИТЕЛЯ

Статья в формате PDF 182 KB...

06 01 2020 19:40:21

ИСПОЛЬЗОВАНИЕ МЕТОДА ДИАГОНАЛЬНОЙ СЕГМЕНТАРНОЙ АМПЛИТУДОМЕТРИИ ДЛЯ ДИАГНОСТИКИ ФУНКЦИОНАЛЬНОГО СОСТОЯНИЯ СПОРТСМЕНОВ

Методика диагональной сегментарной амплитудометрии, заключающаяся в регистрации амплитуды колебаний активного и реактивного сопротивления тканей человеческого организма, широко используемая в медицинской практике, начинает применяться в спорте для контроля за функциональным состоянием спортсменов в различные периоды учебно-тренировочного процесса. Результаты, полученные данным методом, показывают, что различия в проводимости тканей определяются видом спорта, а также квалификацией спортсменов. Проводимость тканей более устойчива в подготовительный период по сравнению с соревновательным. Суммарная нестабильность проводимости тканей выше на соревнованиях более высокого уровня. ...

03 01 2020 22:11:24

ПУТИ ИСПОЛЬЗОВАНИЯ СЕМЯН ОБЛЕПИХИ НА ПИЩЕВЫЕ ЦЕЛИ

Статья в формате PDF 100 KB...

28 12 2019 16:51:48

ИСЛЕДОВАНИЕ РАБОТЫ КОТЕЛЬНОГО АГРЕГАТА ТП-13/В, РАБОТАЮЩЕГО НА ПРИРОДНО-ДОМЕННОЙ СМЕСИ ГАЗОВ

В статье отражен анализ работы котельного агрегата Т П-13/ В, работающего на смеси природного и доменного газов, выявлены основные недостатки его работы. Также предложены мероприятия, позволяющие повысить эффективность котельного агрегата и решить некоторые проблемы, связанные с его работой. Рассмотрена целесообразность внесения предложенных изменений. ...

27 12 2019 3:20:21

БРИЛЛЬ ГРИГОРИЙ ЕФИМОВИЧ

Статья в формате PDF 452 KB...

21 12 2019 23:47:53

ГРЕХОПАДЕНИЕ В КОНТЕКСТЕ ПСИХОАНАЛИЗА

Статья в формате PDF 92 KB...

19 12 2019 13:27:10

СЕМЬЯ УЛЬЯНОВЫХ И БЛАГОТВОРИТЕЛЬНОСТЬ

Статья в формате PDF 140 KB...

16 12 2019 22:17:42

Сведенцов Евгений Павлович

Статья в формате PDF 294 KB...

13 12 2019 14:34:10

МОДЕЛИРОВАНИЕ ЦЕЛОСТНОГО ОБРАЗОВАТЕЛЬНОГО ПРОСТРАНСТВА

В настоящее время важно пройти сложнейший этап перехода к новому типу социально-экономического развития быстро, компетентно, опираясь на собственные творческие возможности. Именно этим целям служит разработанная нами модель педагогических основ формирования целостного образовательного пространства, основу которого составляет внедрение непрерывного образования в интегрированном профессиональном учебном заведении. Моделирование целостного образовательного пространства осуществлялось нами через уточнение таких понятий, как «интеграция», «межпредметные связи», «взаимосвязь», интегративно-педагогические закономерности, интегративная деятельность, через изучение опыта зарубежных исследователей, решающих проблемы педагогической интеграции. ...

11 12 2019 4:39:16

ТЕХНОЛОГИИ БИЗНЕСА ПРИ ОЦЕНКЕ ХОЗЯЙСТВЕННЫХ СВЯЗЕЙ

Статья в формате PDF 256 KB...

06 12 2019 16:23:35

Успехи и перспективы развития эмбриологии

Статья в формате PDF 104 KB...

03 12 2019 6:14:31

ПРИБОР “ZEPPER” ПРОТИВ ПАРАЗИТОФАУНЫ ЧЕЛОВЕКА

Статья в формате PDF 134 KB...

28 11 2019 4:28:25

CHYTRIDIOMYCOSIS У ЛИЧИНОК RANA ARVALIS NILSSON НА СРЕДНЕМ УРАЛЕ

На основании диагностических признаков приводятся доказательства, указывающие на то, что Chytridiomycosis существует в популяциях Rana arvalis на Среднем Урале. Показана методика обнаружения заболевания по аномалиям ротового аппарата личинок и отслеживания динамики частоты встречаемости его в популяции. В экстремальных условиях инфекция поражает ослабленных и ведет к их выбраковке, что приводит к ускорению адаптации популяции в целом в быстро изменяемой среде. ...

27 11 2019 19:10:55

ДИНАМИКА СОДЕРЖАНИЯ ДНК В ЯДРАХ КЛЕТОК СЛИЗИСТОЙ ОБОЛОЧКИ ЖЕЛУДКА ОТ ГИСТОЛОГИЧЕСКОЙ НОРМЫ ДО НЕОПЛАСТИЧЕСКИХ ИЗМЕНЕНИЙ

В статье авторы показали изменение плоидности и площади ядер слизистой оболочки желудка при фоновых, предраковых заболеваниях и раке желудка различного гистологического строения с помощью компьютерного анализатора изображения. При дисплазии тяжелой степени площадь и плоидность ядра составили 213,7±3,42 мкм² и 10,2±0,2с соответственно. При высокодифференцированной аденокарциноме эти показатели достигают 375,0±17,0 мкм² и 16,2±2,7с. Авторы предположили, что полученные данные могут быть использованы для более объективной оценки патологических процессов в слизистой желудка и дифференциальнодиагностических вопросов между дисплазиями и раком желудка. ...

22 11 2019 10:53:23

НОВЫЙ ПОДХОД К ОЦЕНКЕ УЩЕРБА ВОДНЫМ РЕСУРСАМ

Статья в формате PDF 146 KB...

21 11 2019 13:15:11

ВОДНЫЙ РЕЖИМ РЕК СЕВЕРО-ЗАПАДНОГО КАВКАЗА

Статья в формате PDF 126 KB...

20 11 2019 5:52:51

ТЕПЛОВОЙ РАЗГОН В ЩЕЛОЧНЫХ АККУМУЛЯТОРАХ

Статья в формате PDF 121 KB...

15 11 2019 6:39:41

Проблема перевода слов – реалий

Статья в формате PDF 327 KB...

14 11 2019 16:57:40

УПРАВЛЕНИЕ АДАПТИВНЫМИ ОБРАЗОВАТЕЛЬНЫМИ СИСТЕМАМИ

Статья в формате PDF 124 KB...

11 11 2019 4:54:25

ЗАКОН ВЕКОВОГО СМЕЩЕНИЯ ПЛАНЕТ

Статья в формате PDF 127 KB...

10 11 2019 1:58:59

ЭКОЛОГИЧЕСКОЕ ВОСПИТАНИЕ НАСЕЛЕНИЯ В ОМСКОЙ ОБЛАСТИ

Статья в формате PDF 100 KB...

03 11 2019 20:19:23

О ПАМЯТНИКЕ ПРИРОДЫ «КАРАКАНСКИЙ ХРЕБЕТ» В КУЗБАССЕ

Статья в формате PDF 116 KB...

26 10 2019 12:58:35

КОМПЕТЕНТНОСТИ – РЕЗУЛЬТАТИВНО-ЦЕЛЕВАЯ ОСНОВА ОБУЧЕНИЯ БЕЗОПАСНОСТИ ЖИЗНЕДЕЯТЕЛЬНОСТИ В КОНТЕКСТЕ ДЕЯТЕЛЬНОСТНОГО ПОДХОДА

Обобщаются понятия «компетентность». Формулируются компетентности, необходимые для решения проблем безопасности жизнедеятельности в практической работе инженера. Предлагается направление целевого развития компетентностей выпускника технического вуза в процессе его обучения. ...

24 10 2019 14:41:24

ФОРМИРОВАНИЕ НАВЫКА ПОНИМАНИЯ КАК ВАЖНЕЙШЕЕ УСЛОВИЕ РАЗВИТИЯ ЦЕЛОСТНОЙ ЛИЧНОСТИ

Предложен новый подход к построению педагогической системы учителя. Выделена ее основная цель: формирование навыка понимания. Предложен путь ее реализации, включающий согласование целей обучения, разработку новой программы и новых форм и методов обучения. Выявлены некоторые трудности обучения, затрудняющие формирование навыка понимания. ...

22 10 2019 15:30:11

К ВОПРОСУ О ДЕФЛЯЦИИ И ФИЗИЧЕСКОЙ ЭРОЗИИ ГУМУСА

Статья в формате PDF 109 KB...

21 10 2019 3:21:31

АУДИТ ТУРИСТСКИХ ОРГАНИЗАЦИЙ (учебное пособие)

Статья в формате PDF 107 KB...

20 10 2019 18:20:33

ХАРАКТЕРНЫЕ ОБЛАСТИ ПОДВИЖНОЙ ПЛОСКОСТИ

Статья в формате PDF 944 KB...

12 10 2019 19:52:16

СТВОЛОВЫЕ КЛЕТКИСК: ИЗОБРЕТЕНИЯ, ПАТЕНТЫ, ФИРМЫ

Статья в формате PDF 120 KB...

09 10 2019 11:56:51

ИСПОЛЬЗОВАНИЕ ЦЕНТРОБЕЖНОГО СЕПАРАТОРА

Статья в формате PDF 116 KB...

07 10 2019 8:14:15

Организация системы адаптации человека в онтогенезе

Статья в формате PDF 104 KB...

06 10 2019 10:33:33

ИЛЬМУШКИН ГЕОРГИЙ МАКСИМОВИЧ

Статья в формате PDF 293 KB...

05 10 2019 13:47:46

Еще:
Обзоры -1 :: Обзоры -2 :: Обзоры -3 :: Обзоры -4 :: Обзоры -5 :: Обзоры -6 :: Обзоры -7 :: Обзоры -8 :: Обзоры -9 :: Обзоры -10 :: Обзоры -11 ::

Последовательность подготовки научной работы может быть такой:

Выбор темы. Это важный этап. Во-первых, тема должна быть интересна не только вам, но и большинству слушателей, которым вы будете её докладывать, чтобы вы видели заинтересованность в их глазах, а не откровенную скуку.

Выбор целей и задач своей научной работы. То есть, нужно сузить тему. Например, тема: «Грудное вскармливание», сужение темы: «Грудное вскармливание среди студенток нашего ВУЗа». И если общая тема мало кому интересна, то суженная до рамок собственного института или университета, она становится интересной практически для всех слушателей. Целью может стать: «Содействие оптимальным условиям вскармливания грудью детей студентов нашего ВУЗа», а задачей — доказать, что специальные условия, созданные для кормящих студенток, не помешают их успеваемости, но уменьшат количество пропусков, академических отпусков и способствуют выращиванию здоровых детей — нашего будущего. Понятно, что эта тема подходит для студентов медицинских и педагогических ВУЗов, но и в других учебных учреждениях можно найти темы, интересные всем.

Разработать методы исследования и сбора информации. В случае с естественным вскармливанием, скорее всего, это будет анкетирование студенток, имеющих детей.

Систематизировать материал и подготовить презентацию.

Подготовиться к выступлению.

Выступить и получить: награду, удовольствие и опыт, чтобы в следующем году выступить ещё лучше и сорвать шквал аплодисментов, стать узнаваемым, а значит — более конкурентоспособным!