IT-Reviews    

ИТЕРАЦИОННЫЙ МОДУЛЯРНЫЙ ДИЗАЙН ДВУМЕРНЫХ НАНОСТРУКТУР

Иванов В.В. Шабельская Н.П. Таланов В.М. Попов В.П. В данной работе предложена эволюционная модель формирования двумерных структур. Определены алгоритмы формирования структур в априори структурированном двумерном пространстве путем заполнения его в соответствии с определенными эволюционными правилами. Статья в формате PDF 283 KB

Словари определяют информацию как «сведения об окружающем мире ипротекающих внем процессах» [1]. Информация выступает как знание оструктурах. Вхимии язык, на котором записано устройство структуры вещества, частично известен ивключает всебя законы Д.И.Менделеева, Е.С.Федорова, стереохимии икристаллохимии. Но сами вещества при своем взаимодействии пользуются более простым «конфигурационным» языком, включающим программы их связывания (программы комплементарности) вболее крупные агрегаты [2, 3]. Комплементарность структурных единиц вещества закодирована содержащейся вних информацией (зарядом, полярностью, размерами, нуклеофильностью ит.д.). При этом существенно, что рост кристаллов является дискретным процессом иосуществляется практически единичным путем (вероятность строго определенного наращивания структуры вконфигурационном пространстве системы взаимодействующих атомов близка кединице). Иное дело внаномире - здесь агрегирование структурных единиц происходит по программам [4, 5]. Структура, таким образом, регистрирует информацию ивыступает как память пути образования нанообъекта. Рост структуры происходит по ветвящимся путям вконфигурационном пространстве.

В данной работе эти общие положения конкретизированы впредложенной эволюционной модели формирования двумерных структур.

В качестве основы для получения локальной структуры может быть выбран один из типов универсальных оптимумов, вчастности, полигоны или полиэдры. Вих вершинах могут располагаться атомы, комплексные частицы или определенные локальные совокупности атомов нескольких сортов - молекулы. Процедура создания локальной структуры Rloc из этих универсальных оптимумов {P} определяется законом Tim) [6, 7]:

Rloc=L {P},im ({P}i, Tim),

а процедура размножения подобных локальных структур - эволюционным законом Tk [7]:

R {P}im=Rloc(Tk).

В общем случае процесс получения совокупностей атомов, которые соответствуют образующимся структурам сдальним порядком, может быть записан следующим образом:

R=L {P},im ({P}i, (Tim, Tk)),

где {P}={Pg} или {Ph} - символ типа изогона - «ядра» локальной структуры: или полигон вида {n} или полиэдр типа призмы {n44}; i - индекс ветвления «ядра», который определяется типом изогона испособом ветвления (посредством вершин iv, ребер (сторон) ir или граней ig изогона); m [0, 1, 2,...] - целочисленный индекс, характеризующий размерный параметр локальной структуры ичисленно равный количеству изогонов-«звеньев» между «ядрами» вветви структуры, при этом относительное «межъядерное» расстояние вединицах размерного параметра изогона внаправлении ветвления равно (m+1); k≤(i - 1) - индекс ветвления вторичных «ядер» [7-9].

Цикл работы генератора (1) (одна генерация ветвлений «ядер») определяет параметр идентичности структуры дальнего порядка внаправлении ветвления, аколичество этих циклов - протяженность упорядоченной структуры. Тип промежуточных между «ядрами» изогонов-«звеньев» определяется типом «ядер», аиндексы их ветвления считаются следующими: iv=ir=ig=1. Для «ядер» ввиде полигонов {n} имеем v=r=n, авозможные значения индексов ветвления iv=ir≤n. Для полиэдров-«ядер» {n44} всоответствии сформулой Эйлера имеем n=g=r-v+2, авозможные значения индексов ветвления iv≤(2+r-n), ir≤(n+v-2) иig≤n. Впроцессе размножения локальных структур Rlok допускается сращивание соседних ветвей структуры между собой за счет вторичных изогонов-«ядер», обуславливающее образование R {P}im -структур, элементы которых полностью или частично заполняют предоставленное им пространство. Вслучае ограничения роста ветвей другими ветвями этой же структуры образуются фрактальные структуры - кластеры или дендримеры [4].

Для полигонных иполиэдрических структур параметр ветвления «ядра» i (совместно спараметром k=i-1) определяет метрическую размерность структуры дальнего порядка R {P}im иформу ячейки. Параметр m определяет размеры этой ячейки вединицах размерного параметра «ядра» внаправлении его ветвления. Для получения полигонных структур вкачестве исходных элементов рассматривали только полигоны сn=3, 4, 6, 8 и12, адля получения полиэдрических структур - полиэдры призматического вида {n44}. Закон генерирования структур спомощью этих элементов определим следующим образом [7-9]:

R {Pg}nm=L {Pg},nm ({Pg}n, (Tnm, T n-1)),

R {Ph}(n/2)m=L {Ph},(n/2)m ({Ph} n/2, (T(n/2)m, T(n/2)-1) ).

Таким образом, дизайн всоответствии сгеометрико-топологическим способом вывода вероятных двумерных структур отражает рост иэволюцию структуры из заданного изогона-модуля (полигона или полиэдра). Взависимости от условий образования иразмножения исходной локальной структуры, атакже пересечения ближайших ветвей роста R {P}im -структуры, имеем более широкое многообразие соответствующих им вероятных двумерных структур. При этом не все они являются структурами стопологически идентичными вершинами изогонов, а, следовательно, не все соответствуют двумерным базовым структурам, которые характеризуются кристаллографически эквивалентными позициями для атомов.

Таблица 1

Двумерные однослойные базовые структуры (сетки Кеплера, обозначения Шлефли) исоответствующие им варианты R {Pg}im -структур

Базовая структура

Характеристики полигона-«ядра»

Характеристика R {Pg}im -структуры

Символ

Симметрия

Обозначение структуры

Топология полигонов

333333

{3}

3m

R {3}30, R {3}31

3(6), 3(5)

33336

{3}

3m

R {3}32

3(4)

{6}∪6{3}

6mm

R ({6}∪6{3})60

3(3), 6(1)

33344

{4}∪2{3}

mm2

R ({4}∪2{3})40

4(2), 3(3)

33434

{3}∪{3}

mm2

R ({3}∪{3})40

3(3)

444

{4}

4mm

R {4}40 , R {4}41, R {4}40

4(4), 4(3), 4(2)

3636

{3}

3m

R {3}30, R {3}31

3(2)

{6}

6mm

R {6}60

6(2)

{6}∪3{3}

3m

R ({6}∪3{3})30

6(2), 3(2)

3464

{4}∪{3}

m

R ({4}∪{3})20

4(2), 3(1)

{6}∪3{4}

3m

R ({6}∪3{4})30

6(1), 4(2)

666

{6}

6mm

R {6}30

6(3)

488

{8}

8mm

R {8}40

8(2)

{8}∪{4}

4mm

R ({8}∪{4})40

8(2), 4(1)

46.12

{6}∪{4}

m

R ({6}∪{4})30

6(1), 4(1)

{12}∪3{6}

3m

R({12}∪3{6})30

12(1), 6(1)

{12}∪3{4}

3m

R ({12}∪3{4})30

12(1), 4(1)

3.12.12

{12}

12mm

R {12}60

12(2)

{12}∪3{3}

3m

R ({12}∪3{3})30

12(2), 3(1)

В случае генерирования двумерных однослойных структур (табл.1) вкачестве вершин элементов-полигонов можно рассматривать атомы. При генерировании двумерных двухслойных базовых структур (табл.2) вкачестве геометрических центров элементов рассматриваются геометрические центры соответствующих полиэдров. Для всех вариантов полученных совокупностей атомов ввиде полигонных или полиэдрических слоев проанализировано условие топологической идентичности вершин вкристаллохимическом
смысле.

Таблица 2

Двумерные двухслойные базовые структуры (полиэдрические слои) исоответствующие им варианты R {Ph}im -структур

Комбинации
полиэдров-изогонов

Характеристика
полиэдра-«ядра»

Характеристика R{Ph}im-структуры

Символ

Симметрия

Обозначение структуры

Топология
полиэдров

4{333} + 3{3333}

{333}

43m

R {333}30

4(4)

{3333}

m3m

R {3333}60, R {3333}30

6(3)

6{344}

{344}

3m

R {344}30, R {344}31

6(6), 6(5)

4{344} + {644}

{344}

3m

R {344}32

6(4)

{644}∪6{344}

6/mmm

R ({644}∪6{344})60

6(3), 12(1)

3{344} + 2{444}

{444}∪2{344}

mmm

R ({444}∪2{344})40

8(2), 6(3)

3{344} + 2{444}

{344}∪{344}

mmm

R ({344}∪{344})40

6(3)

4{444}

{444}

m3m

R {444}40, R {444}41, R {444}40

8(4), 8(3), 8(2)

2{344} + 2{644}

{344}

3m

R {344}30, R {344}31

6(2)

{644}

6/mmm

R {644}60

12(2)

{644}∪3{344}

3m

R ({644}∪3{344})30

12(2), 6(2)

{344} + 2{444} + {644}

{444}∪{344}

mm2

R ({444}∪{344})20

8(2), 6(1)

{644}∪3{444}

3m

R ({644}∪3{444})30

12(1), 8(2)

3{644}

{644}

6/mmm

R {644}30

12(3)

{444} + 2{844}

{844}

8/mmm

R {844}40

16(2)

{844}∪{444}

mm2

R ({844}∪{444})40

16(2), 8(1)

{444} + {644} + {12.44}

{644}∪{444}

mm2

R ({644}∪{444})30

12(1), 8(1)

{12.44}∪3{644}

3m

R ({12.44}∪3{644})30

24(1), 12(1)

{12.44}∪3{444}

3m

R ({12.44}∪3{444})30

24(1), 8(1)

{344} + 2{12.44}

{12.44}

12/mmm

R {12.44}60

24(2)

{12.44}∪3{344}

3m

R ({12.44}∪3{344})30

24(2), 6(1)

Динамика образования простых R {Pg}im -структур (т.е. из полигонов {3}, {4} и{6}) иособенности их эволюции впроцессе роста характеризуют их топологические характеристики. Установлено, что только структуры сминимальными значениями параметра m состоят из полигонов стопологически идентичными вершинами.

Двумерные полигонные структуры получены данным методом из набора возможных R {Pg}im -структур при значениях индексов i=n иm=0 или 1 (см.табл. 1). Однако только часть структурных представителей этого набора соответствуют одиннадцати полигонным структурам стопологически идентичными вершинами полигонов (сеткам Кеплера). Вчастности, двумерным сеткам 33336, 488 и666 соответствуют только структуры R {3}32, R {8}40 иR {6}30. Кроме того, большинство гетерополигонных структур могут быть получены только втом случае, если вкачестве «ядра» R {Pg}im-структуры выбраны объединения двух разных типов полигонов (см. табл. 1, структуры 2-4, 6, 7, 9-11).

Отметим, что для большинства полигонных структур возможны два или более вариантов их образования. Данная многовариантность может быть обусловлена особенностями роста иэволюции структуры из заданного полигона или гетерополигонного модуля. Эти особенности являются результатом наличия как минимум двух типов ветвления «ядер»: ветвление спомощью вершин iv или ветвление спомощью сторон ir полигона (см. табл.1), атакже многовариантностью ветвления вторичных «ядер» R {Pg}im-структур при пересечении вних соседних ветвей.

Полиэдрические слои, соответствующие двумерным двухслойным базовым структурам, получены из 11 двумерных полигонных структур. Все они могут быть представлены как результат размножения локальных R {Ph}im-структур, образованных из полиэдров призматического вида {n44} или их возможных объединений, по аналогии сполигонными структурами (см. табл.1). Исключение представляет октатетраэдрический слой, представленный из тетраэдров {333}, из октаэдров {3333} или их возможного объединения (4{333}∪3{3333}) (см. табл. 2).

Таким образом, предложены информационные генетические коды L {P},im ({P}i(Tim, Tk))) для двумерных полигонных иполиэдрических структур. Методом итерационного модулярного дизайна получены серии структур стопологически идентичными элементами, представители которых могут рассматриваться как структурные элементы структур кристаллов. Разработана модель иопределены алгоритмы формирования структур ваприори структурированном двумерном пространстве путем заполнения его всоответствии сопределенными эволюционными правилами.

Список литературы

  1. Словарь русского языка / под ред. А.П. Евгеньевой. - М.: Русский язык, 1981. - 674 с.
  2. Лен Ж.М. Супрамолекулярная химия: концепции иперспективы. - Новосибирск: Наука, 1998. - 334 с.
  3. Алесковский В.Б. Информация как фактор самоорганизации иорганизации вещества // Журн. общей химии. - 2002. - Т.72, №4. - С. 611-616.
  4. Таланов В.М., Ерейская Г.П., Юзюк Ю.И. Введение вхимию ифизику наноструктур инаноструктурированных материалов - М.: Изд-во «Академия естествознания», 2008. - 389 с.
  5. Таланов В.М., Ерейская Г.П. Методы синтеза наноструктур инаноструктурированных материалов. - Новочеркасск: ЮРГТУ (НПИ), 2011. - 284 с.
  6. Иванов В.В. Комбинаторное моделирование вероятных структур неорганических веществ. - Ростов-на-Дону: Изд-во СКНЦ ВШ, 2003. - 204 с.
  7. Иванов В.В., Шабельская Н.П., Таланов В.М. Информация иструктура внаномире: модулярный дизайн двумерных полигонных иполиэдрических наноструктур // Современные наукоемкие технологии. - 2010. - №10. - С. 176-179.
  8. Иванов В.В., Таланов В.М. Модулярное строение наноструктур: Информационные коды икомбинаторный дизайн // Наносистемы: Физика, Химия, Математика. - 2010. - Т.1, №1. - С. 72-107.
  9. Иванов В.В., Таланов В.М., Гусаров В.В. Информация иструктура внаномире: модулярный дизайн двумерных наноструктур ифрактальных решеток // Наносистемы: Физика, Химия, Математика. - 2011. - Т.2, №3. - С. 121-134.



Отзывы (через Facebook):

Оставить отзыв с помощью аккаунта FaceBook:

ОСОБЕННОСТИ НЕПРЕРЫВНОЙ МНОГОУРОВНЕВОЙ ПОДГОТОВКИ СПЕЦИАЛИСТОВ В ЕДИНОМ ПЕДАГОГИЧЕСКОМ ПРОСТРАНСТВЕ "ШКОЛА-КОЛЛЕДЖ-ВУЗ"

В работе выявлены специфические особенности непрерывной многоуровневой подготовки специалистов в едином педагогическом пространстве « Школа – Колледж – В У З », позволяющие с иной точки зрения подходить к отдельным аспектам модернизации непрерывного образования. ...

11 11 2019 14:17:38

ПЕРЕСЕЛЕНЧЕСКИЙ КАПИТАЛИЗМ В США

Статья в формате PDF 320 KB...

06 11 2019 4:30:46

КОРЯК ЮРИЙ АНДРЕЕВИЧ

Статья в формате PDF 358 KB...

03 11 2019 23:42:19

Экология и здоровье

Статья в формате PDF 119 KB...

02 11 2019 0:21:51

ЭКОНОМЕТРИЧЕСКОЕ МОДЕЛИРОВАНИЕ

Статья в формате PDF 345 KB...

29 10 2019 11:19:55

РОССИЙСКАЯ АКАДЕМИЯ ЕСТЕСТВОЗНАНИЯ

Статья в формате PDF 199 KB...

25 10 2019 21:38:37

АНОРОГЕННЫЕ ГРАНИТОИДЫ АБАЙСКОГО МАССИВА ГОРНОГО АЛТАЯ: ПЕТРОЛОГИЯ И ГЕОХИМИЯ

В статье приведены спорные данные предшественников по составу и особенностям становления гранитоидов Абайского массива среднего девона. Новые данные, полученные авторами по петрологии и геохимии, позволяют отнести гранитоиды массива к анорогенному типу ( А-тип) с щелочными минералами (рибекитом, астрофиллитом). Формирование массива протекало в три фазы: 1 – гранодиориты; 2 – граниты, умеренно-щелочные рибекитовые граниты; 3 – лейкограниты и лейкогранит-порфиры. Генерация их происходила в постколлизионной обстановке, инициированной плюмтектоникой. В северо-западной части массива в районе пологого погружения кровли, осложнённой куполовидным поднятием, зафиксировано аномальное обогащение флюидной магматогенной фазы летучими компонентами, и особенно фтором, что указывает на возможность обнаружения здесь редкометалльно-редкоземельного оруденения. ...

17 10 2019 8:41:37

Проблема перевода слов – реалий

Статья в формате PDF 327 KB...

03 10 2019 4:46:36

Краснощекова Галина Алексеевна

Статья в формате PDF 177 KB...

01 10 2019 9:13:30

ВИРТУАЛЬНЫЕ ИНФОРМАЦИОННО-ИЗМЕРИТЕЛЬНЫЕ ПРИБОРЫ

Статья в формате PDF 265 KB...

29 09 2019 6:39:31

АВТОРИТЕТ ПРЕПОДАВАТЕЛЯ-ВРАЧА

Статья в формате PDF 94 KB...

20 09 2019 2:38:38

ШЕРСТНЕВ ВЛАДИМИР ПЕТРОВИЧ

Статья в формате PDF 125 KB...

25 08 2019 6:18:12

ЭКОЛОГИЧНАЯ ДРЕНАЖНАЯ ТЕХНИКА

Статья в формате PDF 266 KB...

21 08 2019 1:51:34

ВНЕСЕНИЕ СО2 ЭКСТРАКТА РОЗМАРИНА В ХЛЕБ

Статья в формате PDF 253 KB...

19 08 2019 14:44:15

СЕМЬЯ УЛЬЯНОВЫХ И БЛАГОТВОРИТЕЛЬНОСТЬ

Статья в формате PDF 140 KB...

15 08 2019 17:39:19

СТОЛЯРОВ СТАНИСЛАВ ПЕТРОВИЧ

Статья в формате PDF 225 KB...

14 08 2019 20:49:45

ОПЫТ ПРИМЕНЕНИЯ МЕТОДА АГРОСТЕПЕЙ ДЛЯ ВОССТАНОВЛЕНИЯ НАРУШЕННОЙ РАСТИТЕЛЬНОСТИ ДОЛИНЫ СРЕДНЕЙ ЛЕНЫ (ЦЕНТРАЛЬНАЯ ЯКУТИЯ)

Анализ опыта по восстановлению методом агростепей растительности на нарушенных кормовых угодьях долины средней Лены показал, что метод при соблюдении экологических условий и видового состава участков обеспечивает восстановление растительности, проявляющееся в повышении проективного покрытия и доминировании в травостое целинных видов. Соответствие экологических условий и видового состава травостоя при подборе участков обеспечивает восстановление растительности нарушенных участков до 70–75 % и доминирование в травостое целинных видов до 60–65 % в условиях нормального и сильного засоления. ...

08 08 2019 17:31:24

СОЦИАЛЬНЫЕ ФАКТОРЫ ЭЛЕКТОРАЛЬНОЙ ГЕОГРАФИИ

Территориальные различия электоральных предпочтений отличаются высокой устойчивостью в современной России. Этот феномен подтверждается методом корреляционного анализа. Выделяются шесть основных социальных факторов, влияющих на различия в электоральной географии: 1) доля городского населения; 2) приближенность к центру; 3) этнический фактор; 4) доля молодежи в составе населения; 5) преобладающие виды деятельности населения; 6) структура социальных связей. Электоральное поведение в России менее индивидуально, чем в западных странах, большее значение имеют объективные социальные факторы. ...

04 08 2019 7:54:15

РЕЛЬЕФ ОКРЕСТНОСТЕЙ Г. КАДНИКОВА

Статья в формате PDF 87 KB...

01 08 2019 23:23:19

Приметы как формы национальной культуры

Статья в формате PDF 249 KB...

28 07 2019 8:55:17

ГЛУЩЕНКО ЛЮДМИЛА ФЁДОРОВНА

Статья в формате PDF 175 KB...

16 07 2019 5:27:22

О НЕКОТОРЫХ АКТУАЛЬНЫХ ПРОБЛЕМАХ В ОБУЧЕНИИ ФИЗИКЕ

Статья в формате PDF 112 KB...

14 07 2019 18:13:22

ФОРМИРОВАНИЕ СИСТЕМЫ МЕНЕДЖМЕНТА КАЧЕСТВА В ВУЗЕ

Статья в формате PDF 146 KB...

10 07 2019 5:40:17

ЗАГРЯЗНЕНИЕ АТМОСФЕРЫ

Статья в формате PDF 104 KB...

04 07 2019 16:25:55

Закономерности экспертных оценок о сотрудничестве России и Европейского Союза в сфере образования

Реформы в образовании ума человека происходят всегда до новых циклов экономического возрождения из кризисов. Это запаздывание весьма большое у России. В развитых странах цикл реформ в образовании начинается за 3–5 лет до начала экономических реформ. Но в России долго запрягают, а потом несутся напролом, на авось. Поэтому колебательное возмущение мнений экспертов превалирует над постоянством, – менталитет очень неровный. Предлагается принципиально новая методика, основанная на анализе устойчивых закономерностей с волновыми составляющими и полученная по конкретным экспертным оценкам. Цель статьи – кратко показать возможности методологии идентификации свойств поведения у групп экспертов, как неких условных популяций много знающих и оценивающих людей, а также привести критерии поведенческой динамики по тем или иным экспертным оценкам об интернационализации российского образования. ...

24 06 2019 17:15:17

ЩИТОВИДНАЯ ЖЕЛЕЗА: ПОКАЗАТЕЛЬ ПЛОЩАДИ КОНТАКТА ЭПИТЕЛИЙ-СТРОМА

Разработан новый морфометрический показатель площади контакта эпителия и стромы. Показатель использовался автором при многолетних исследованиях морфофункционального состояния щитовидной железы у женщин и в эксперименте. ...

23 06 2019 1:12:27

О НАЧАЛЬНОЙ СТАДИИ ПОЧВООБРАЗОВАНИЯ НА ПОСТТЕХНОГЕННЫХ ЛАНДШАФТАХ ЗАПАДНОЙ ЯКУТИИ

Получены сведения о начальных стадиях развития. Согласно профильно-генетической классификации почв техногенных ландшафтов [5] морфологически выделены элювиоземы инициальные, эмбриоземы инициальные и органо-аккумулятивные. Экспериментально показано, что выделение этих типов почв вследствие низкой скорости почвообразования пока возможно только по почвенно-биологическими показателями. Установлено, что микробное сообщество молодых почв на отвалах Мирнинского Г О К имеет характерные черты для начальной стадии почвообразования: более высокую в сравнение зональной почвой численность; низкую активность утилизации целлюлозы; низкую инвентарную. Последнее свидетельствует о низкой скорости формирования органо-минерального комплекса почвы. Выявлено, возможности дифференциации типов молодых техногенных ландшафтов по способу субстратов поддерживать начальный рост тест растений. ...

22 06 2019 23:57:21

ОСОБЕННОСТИ ФОРМИРОВАНИЯ ВЕГЕТАТИВНОГО ГОМЕОСТАЗА У ДЕТЕЙ ШКОЛЬНОГО ВОЗРАСТА В РАЗЛИЧНЫХ РЕГИОНАХ СИБИРИ

С целью изучения экологических и этнических особенностей адаптационно-компенсаторных механизмов у детей различных популяционных групп были обследованы 208 школьников 7-15 лет, проживающие в г. Красноярске и в Эвенкии. Проведена комплексная клинико-инструментальная оценка вегетативного статуса по показателям кардиоинтервалографии с клиноортостатической пробой. Показано, что в популяции жителей Эвенкии этническая принадлежность (дети эвенков) является одним из факторов, формирующих вегетативный гомеостаз. Они отличаются от детей пришлого населения Эвенкии по напряжению вегетативных механизмов регуляции. Полученные результаты необходимы для разработки региональных критериев здоровья, проведения коррекционных и профилактических мероприятий на донозологическом этапе. ...

19 06 2019 18:34:58

Еще:
Обзоры -1 :: Обзоры -2 :: Обзоры -3 :: Обзоры -4 :: Обзоры -5 :: Обзоры -6 :: Обзоры -7 :: Обзоры -8 :: Обзоры -9 :: Обзоры -10 :: Обзоры -11 ::

Последовательность подготовки научной работы может быть такой:

Выбор темы. Это важный этап. Во-первых, тема должна быть интересна не только вам, но и большинству слушателей, которым вы будете её докладывать, чтобы вы видели заинтересованность в их глазах, а не откровенную скуку.

Выбор целей и задач своей научной работы. То есть, нужно сузить тему. Например, тема: «Грудное вскармливание», сужение темы: «Грудное вскармливание среди студенток нашего ВУЗа». И если общая тема мало кому интересна, то суженная до рамок собственного института или университета, она становится интересной практически для всех слушателей. Целью может стать: «Содействие оптимальным условиям вскармливания грудью детей студентов нашего ВУЗа», а задачей — доказать, что специальные условия, созданные для кормящих студенток, не помешают их успеваемости, но уменьшат количество пропусков, академических отпусков и способствуют выращиванию здоровых детей — нашего будущего. Понятно, что эта тема подходит для студентов медицинских и педагогических ВУЗов, но и в других учебных учреждениях можно найти темы, интересные всем.

Разработать методы исследования и сбора информации. В случае с естественным вскармливанием, скорее всего, это будет анкетирование студенток, имеющих детей.

Систематизировать материал и подготовить презентацию.

Подготовиться к выступлению.

Выступить и получить: награду, удовольствие и опыт, чтобы в следующем году выступить ещё лучше и сорвать шквал аплодисментов, стать узнаваемым, а значит — более конкурентоспособным!