IT-Reviews    

РАЗБИЕНИЕ И СТРУКТУРИРОВАНИЕ ПРОСТРАНСТВА, ОПИСАНИЕ ПРОЦЕССА ФОРМИРОВАНИЯ МОДУЛЬНОГО КРИСТАЛЛА

Иванов В.В. Таланов В.М. Обсуждается проблемы разбиения и структурирования пространства, формирования структурных модулей, которые предназначены для конструирования модульных 3D структур кристаллов. Статья в формате PDF 295 KB

Создание эволюционной модели формирования трехмерных (3D) структур кристаллов и ее реализация могут быть основаны на решении по крайней мере двух взаимосвязанных проблем [1, 2].

Первая проблема - проблема разбиения структурированного (вариант 1) или неструктурированного (вариант 2) 3D пространства на пространственные ячейки определенной формы (модулярные ячейки). В варианте 1 после разбиения проводится идентификация соответствующих структурных фрагментов в ячейках, их модифицирование с сохранением геометрической и топологической совместимости с полученными ячейками и последующее их вложение в ячейки по определенному эволюционному закону [1]. В варианте 2 - формирование структурного фрагмента, геометрически и топологически совместимого с полученными модулярными ячейками, и вложение их в полученные после разбиения ячейки до образования новой модулярной структуры.

Второй проблемой является проблема структурирования 3D пространства путем заполнения его структурными модулями с определенной геометрией и топологией, которые получены путем модифицирования известных структурных фрагментов (вариант 3) или сформированы из простейших атомных ассоциатов (вариант 4) и упакованы в соответствии с определенными упаковочными кодами. Следствием упаковки этих модулей в обоих случаях является самопроизвольное разбиение пространства на пространственные ячейки (модульные ячейки) [2]. Формирование локальной структуры фрагмента (по варианту 4) или целенаправленное модифицирование известного фрагмента (по варианту 3) обязательно сопровождается геометрической и топологической идентификацией их пространственных ячеек. Закономерности заполнения пространственных ячеек в процессе структурирования пространства или после его разбиения определяются в процессе использования конкретного метода моделирования.

Проанализируем возможность решения этих проблем на основе использования готовых кристаллографических и кристаллохимических решений [3-24].

Одномерные периодические разбиения 3D пространства представляют собой различные варианты упаковок 2D слоев. Анализ всех вариантов слоевых упаковок вплоть до 12-ти слоев проведен в [3]. Кодирование слоевых плотнейших упаковок по некоторому фиксированному периоду осуществляется в виде последовательности букв из двух символов: г - гексагональный, к - кубический. Представление этих разбиений на окружности называется паттерсоновским циклотомическим набором точек [2].

В [4] отмечено, что одной из важнейших задач современной кристаллохимии является поиск закономерностей, связанных с геометрическими и топологическими свойствами структур. Большое внимание при этом уделяется, в частности, методам топологического анализа атомных сеток, атомных и молекулярных упаковок, конфигурации пустот и структурных каналов. Наиболее эффективным для изучения топологических характеристик сеток структурных каналов является анализ результатов тайлинг-разбиения пространства. Каждой сетке в случае базовых упаковок атомов соответствует натуральный тайлинг, который удовлетворяет определенным критериям. Одно из свойств натурального тайлинга - соответствие ему дуальной сетки, описывающей систему пустот и структурных каналов [4, 5].

Один из классических подходов к структурированию 3D пространства основан на использовании упаковок правильных и полуправильных изогонов [6]. Из данных изогонов можно получить 28 топологически различных полиэдрических комбинаций, соответствующим базовым упаковкам атомов [6]. Если рассматривать любую из известных базовых упаковок атомов, то в 3D пространстве им соответствуют сетки структурных каналов с определенными геометрическими и топологическими характеристиками. Формирование модульных структур кристаллов может быть представлено как процесс закономерного заполнения полиэдрических пустот одной из этих атомных упаковок или как процесс закономерного заполнения атомами (например, катионами) вершин полиэдров Вороного, построенных на заданной упаковке анионов, в соответствии с определенными правилами [6]. Если учесть, что в роли атомов анализируемых упаковок могут выступать их устойчивые ассоциаты (полиэдры, атомные и полиэдрические микрокластеры и другие структурные модули), то в результате моделирования могут быть получены модульные кристаллические структуры, стоящие на разных ступенях иерархической лестницы.

Геометрические образы и конфигурации сетки структурных каналов могут быть также получены с помощью линий, соединяющих ближайшие центры изогонов. В этом случае ячейкой такой 3D сетки будут Дирихле многогранники. Топологические характеристики вершин Дирихле многогранников полностью определяют геометрию структурных каналов для каждой комбинации [6]. Таким образом, переход от комбинации изогонов к соответствующему Дирихле многограннику позволяет, по-видимому, упростить процедуру анализа вероятных структурных особенностей, связанных с составом и симметрией структуры.

В методе дискретного моделирования (см., например, работы [7-9]) решение проблемы основано на разбиении 3D пространства кристаллической решетки молекулярного кристалла на поликубы произвольной формы - дискретные модели молекул. Процесс формирования структуры кристалла может быть представлен заполнением пространственных ячеек поликубами в соответствии с симметрийным кодом путем многоэтапного присоединения к исходному затравочному элементу этого разбиения соседних аналогичных поликубов до образования возможных периодических упаковок с заданным коэффициентом. В рамках этого же метода моделирования разработан вариант формирования структуры из димеров - двух трансляционно независимых поликубов, связанных центром инверсии [7].

Аналогичное решение получено и для 2D разбиений на плоской решетке. При этом образуются полимино - связные фигуры, которые являются результатом объединения некоторого конечного числа единичных квадратов координатной сетки с вершинами, расположенными в точках с целочисленными координатами и внутренней областью. Получена комбинаторная формула для количества вариантов конфигураций полимино с фиксированным числом клеток. Проанализирована проблема однозначности разбиения упаковочного пространства на гомометрические (изовекторные) полимино и сформулирован частный критерий разбиения: если свертка составлена из точечных структур, одна из которых центросимметрична, то она представляет собой гомометрическую пару.

В методе детерминированного модульного дизайна [10-12] используются возможности метода разбиения Делоне предварительно структурированного с помощью плотнейшей упаковки атомов 3D кристаллического пространства на симплексы - простейшие пространственные ячейки. Процесс формирования кристалла осуществляется из ячеек-модулей, включающих кластер или молекулу, с использованием только бинарных операций симметрии по определенному радиальному алгоритму (радиальному коду) сборки регулярных апериодических структур.

В методе, основанном на использовании работы клеточных автоматов [13, 14], разбиение пространства задано априори в виде одинаковых ячеек - в общем случае параллелепипедов. Распознавание образов вероятных модульных структур происходит в результате работы клеточных автоматов, заполняющих пространственные ячейки атомами или группами атомов по вполне определенной заранее заданной программе (послойному эволюционному упаковочному коду). В частности, в работе [14] показана возможность получения за четыре цикла работы четырехцветного клеточного автомата на квадратной решетке послойное изображения бипирамидального нанокомплекса, который является модулем ряда цеолитных структур, в частности, структуры цеолита RHO и паулингита.

Разбиение 3D пространства на ячейки в соответствии со структурно-топологическим методом моделирования процессов самоорганизации в кристаллообразующих системах [15-24] является результатом согласованного процесса матричной конвергентной самосборки локально организованных супраполиэдрических кластеров. В основе эволюционного формирования структур заложены единые физические принципы - принцип максимального заполнения пространства и требование максимальной связности структуры. Локальное структурирование пространства происходит за счет образования простейших ассоциатов из атомов, соответствующих фундаментальным конфигурациям (первичных атомных кластеров - супраполиэдрических предшественников), и образования из них супракластеров по симметрийно-топологическому коду формирования вторичных фундаментальных конфигураций и с учетом достижения максимальной термодинамической устойчивости. Эффективность данного метода моделирования процессов самоорганизации подтверждена результатами структурно-топологического анализа и моделирования кристаллических структур силикатов, германатов, фосфатов, сульфатов, селенатов [15-20] и некоторых структур интерметаллидов [21-24].

Необходимо отметить, что все проанализированные выше методы разбиения и структурирования пространства, формирования структурных модулей, а также формирования из них модульных структур кристаллов предполагают определенный символизм описания. Идея кодирования структур в виде последовательности символов, из которой структура может быть воспроизведена, имеет фундаментальное значение. Такая последовательность символов может рассматриваться как «ген» структуры [2]. Символьному описанию модульных структур кристаллов в форме представления их структурных и генетических кодов посвящены, в частности, следующие работы [25-28].

Список литературы

  1. Ferraris G., Makovicky E., Merlino S. Crystallography of modular structures // IUC Oxford Science Publications, 2008.
  2. Лорд Э.Э., Маккей А.Л., Ранганатан С. Новая геометрия для новых материалов. - М.: ФИзматлит, 2010.
  3. Белов Н.В. Структура ионных кристаллов и металлических фаз. - М.: Изд-во АН СССР, 1947.
  4. Блатов В.А. // Журн. структурн. химии. - 2009. - 50, Приложение. С.166.
  5. Blatov V.A., Delgado-Friedrichs O., O´Keeffe M., Proserpio D.M. // Acta Crystallogr., 2007. - A63. -P.418.
  6. Уэллс А. Структурная неорганическая химия. В 3-х томах. - М.: Мир, 1987/88.
  7. Малеев А.В. // Кристаллография. - 2002. - 47, №5. - С. 797.
  8. Малеев А.В., Житков И.К., Рау В.Г. // Кристаллография. - 2005. - 50, №5. - С. 788.
  9. Рау В.Г., Пугаев А.А., Рау Т.Ф. // Кристаллография. - 2006. - 51, №1. - С. 8.
  10. Бульенков Н.А., Тытик Д.Л. // Изв. АН. Сер. хим. - 2001. - №1. - С. 1.
  11. Тытик Д.Л. // Кристаллография. - 2008. - 53, №6. - С. 971.
  12. Желиговская Е.А., Бульенков Н.А. // Кристаллография. - 2008. - 53, №6. - С. 1126.
  13. Krivovichev S.V. // Acta Cryst. A. - 2004. - 60. - P. 257.
  14. Shevchenko V.Ya., Krivovichev S.V. // Struct. Chem. - 2008. - 19. - P. 571.
  15. Ilyshin G.D., Blatov V.A., Zakutkin Yu.A. // Acta Crystallogr. B. - 2002. - 58. - P. 948.
  16. Илюшин Г.Д., Блатов В.А. // Кристаллография. - 2006. - 51, №3. - С. 400.
  17. Демьянец Л.Н., Илюшин Г.Д. // Кристаллография. - 2007. - 52, №1. - С. 17.
  18. Илюшин Г.Д., Демьянец Л.Н. // Кристаллография. - 2008. - 53, №3. - С. 397.
  19. Илюшин Г.Д., Демьянец Л.Н. // Журн. неорган. химии. - 2008. - 53,. №1. - С. 101.
  20. Илюшин Г.Д., Демьянец Л.Н. // Журн. неорган. химии. - 2009. - 54, №3. - С. 484.
  21. Shevchenko V.Ya., Mackay A.L. // Glass Phys. Chem. - 2008. - 34, №1. - P. 1.
  22. Ilyushin G.D., Blatov V.A. // Acta Crystallogr. B. - 2009. - 65. - P. 300.
  23. Blatov V.A., Ilyushin G.D., Proserpio D.M. // Inorgan. Chem. - 2010. - 55, №4. - P. 1811.
  24. Илюшин Г.Д., Блатов В.А // Журн. неорган. химии. - 2010. - 55,. №12. - С.2023.
  25. Иванов В.В., Демьян В.В., Таланов В.М. // Междунар. журн. эксп. образования. - 2010. - №11. - С. 153.
  26. Иванов В.В., Таланов В.М. // Наносистемы: Физика, Химия, Математика. - 2010. - 1, №1. - С. 72.
  27. Иванов В.В., Таланов В.М., Гусаров В.В. //. Наносистемы: Физика, Химия, Математика. - 2011. 2, № 3. - С. 121.
  28. Иванов В.В., Шабельская Н.П., Таланов В.М, Попов В.П. // Успехи совр. естеств. - 2012. - №2. - С. 60.



Отзывы (через Facebook):

Оставить отзыв с помощью аккаунта FaceBook:

ОЦЕНКА КЛИНИЧЕСКОЙ ЭФФЕКТИВНОСТИ АНТИБИОТИКОТЕРАПИИ САЛЬМОНЕЛЛЕЗОВ У ДЕТЕЙ

В работе проводились исследования 129 больных в возрасте от 1 месяца до 14 лет. У 68 (52,7 %) детей был диагностирован сальмонеллез еnteritidis, а у 61 (47,3 %) – сальмонеллез typhimurium. В ходе исследования проведена оценка клинической эффективности антибиотикотерапии с определением чувствительности к антимикробным препаратам. Выявлено, устойчивость клафорана к действию большинства бета-лактамаз, определена его клиническая эффективность в терапии тяжелых форм сальмонеллеза еnteritidis. Подтверждена не высокая эффективность монотерапии ципрофлоксацином. Рекомендована коррекция лечения путем использования комбинации препаратов – ципрофлоксацин + меронем. ...

28 03 2020 12:17:56

ЮРЬЕВ АЛЕКСАНДР ГАВРИЛОВИЧ

Статья в формате PDF 320 KB...

19 03 2020 16:35:53

ПРОБЛЕМЫ КАЧЕСТВА ОБРАЗОВАНИЯ

Статья в формате PDF 239 KB...

11 03 2020 11:58:22

ДИНАМИКА СОДЕРЖАНИЯ ДНК В ЯДРАХ КЛЕТОК СЛИЗИСТОЙ ОБОЛОЧКИ ЖЕЛУДКА ОТ ГИСТОЛОГИЧЕСКОЙ НОРМЫ ДО НЕОПЛАСТИЧЕСКИХ ИЗМЕНЕНИЙ

В статье авторы показали изменение плоидности и площади ядер слизистой оболочки желудка при фоновых, предраковых заболеваниях и раке желудка различного гистологического строения с помощью компьютерного анализатора изображения. При дисплазии тяжелой степени площадь и плоидность ядра составили 213,7±3,42 мкм² и 10,2±0,2с соответственно. При высокодифференцированной аденокарциноме эти показатели достигают 375,0±17,0 мкм² и 16,2±2,7с. Авторы предположили, что полученные данные могут быть использованы для более объективной оценки патологических процессов в слизистой желудка и дифференциальнодиагностических вопросов между дисплазиями и раком желудка. ...

10 03 2020 16:58:49

ФУНКЦИИ СЕТЕВОГО ТРОЛЛИНГА

Статья в формате PDF 257 KB...

06 03 2020 0:35:55

Экология и здоровье

Статья в формате PDF 119 KB...

05 03 2020 17:17:54

ОЦЕНКА СИНТЕЗИРОВАННЫХ СОРБЕНТОВ

Статья в формате PDF 208 KB...

29 02 2020 20:23:40

МАТЕМАТИЧЕСКАЯ МОДЕЛЬ ОРГАНИЗАЦИИ ЛИЧНОСТНО-ОРИЕНТИРОВАННОГО ОБУЧЕНИЯ УЧАЩИХСЯ НА ГИПЕРГРАФАХ

В настоящей статье представлена многокритериальная математическая модель организации личностно-ориентированного обучения учащихся. Построена экстремальная модель на языке теории гиперграфов. ...

24 02 2020 13:57:46

КЛАССИЧЕСКАЯ ФИЗИКА НА ГНИЛОМ ФУНДАМЕНТЕ (КАТАСТРОФА В МЕХАНИКЕ )

1. Второй закон Ньютона в катастрофе это неоспоримый факт. 2. Нужно думать, что после такой катастрофы вся классическая физика полетит к чёрту, вместе с физиками, которые попытаются её защищать. 3. Учёные физики всех стран попали в капкан у них дилемма: или они признают теорию Ростовцева или им грозит скамья подсудимых за ложную науку и обман человечества. ...

21 02 2020 16:46:45

ДНИ КВАНТОВОЙ МЕДИЦИНЫ В ЕВРОПЕ

Статья в формате PDF 140 KB...

19 02 2020 4:30:21

Клиника и лечение кишечного амебиаза

Статья в формате PDF 104 KB...

14 02 2020 5:30:26

О ПАМЯТНИКЕ ПРИРОДЫ «КАРАКАНСКИЙ ХРЕБЕТ» В КУЗБАССЕ

Статья в формате PDF 116 KB...

03 02 2020 11:10:24

СПОСОБ ЛЕЧЕНИЯ ГИПЕРТРОФИЧЕСКИХ РУБЦОВ

Статья в формате PDF 111 KB...

28 01 2020 17:22:39

СОСТОЯНИЕ ЗВЕРОВОДСТВА В ЯКУТИИ

Обзор состояния кормления и причин падежа молодняка лисиц в  О О О « Покровское зверохозяйство» Республики Саха ( Якутия) в 2010 г. ...

27 01 2020 5:27:56

Новые виды рыбопродуктов

Статья в формате PDF 115 KB...

24 01 2020 20:15:32

ИСПОЛЬЗОВАНИЕ МЕТОДА ПРОЕКТОВ В ЛИЦЕЕ ПРИ ВУЗЕ

Статья в формате PDF 97 KB...

23 01 2020 3:44:25

Я И МОЁ ЗДОРОВЬЕ

В статье излагается позиция автора о необходимости максимально ответственно относиться к своему здоровью, исходя из объективных предпосылок нашего времени. ...

22 01 2020 3:30:28

ЭТНОЭПИДЕМИОЛОГИЧЕСКИЕ ПРОБЛЕМЫ ДАЛЬНЕГО ВОСТОКА

Статья в формате PDF 102 KB...

21 01 2020 0:54:27

БИОХИМИЯ КРОВИ (учебное пособие)

Статья в формате PDF 106 KB...

19 01 2020 0:33:47

АКТУАЛЬНЫЕ ПРОБЛЕМЫ ОСВОЕНИЯ ЦЕНТРАЛЬНОГО КАВКАЗА

Статья в формате PDF 91 KB...

18 01 2020 15:12:15

БИОЛОГИЯ И ПРОБЛЕМЫ ОХРАНЫ СУРКОВ В КУЗБАССЕ

Статья в формате PDF 112 KB...

03 01 2020 9:17:28

УЧЕНИЕ В.И. ВЕРНАДСКОГО И ЗДОРОВЬЕ НАСЕЛЕНИЯ

Статья в формате PDF 89 KB...

31 12 2019 3:41:54

ВНЕСЕНИЕ СО2 ЭКСТРАКТА РОЗМАРИНА В ХЛЕБ

Статья в формате PDF 253 KB...

29 12 2019 8:38:33

ПРИМЕНЕНИЕ МЕТОДОВ АППРОКСИМАЦИИ ДАННЫХ

Статья в формате PDF 253 KB...

25 12 2019 0:30:58

ИЗУЧЕНИЕ УСЛОВИЙ ПОЛУЧЕНИЯ ФИЦИН-СОДЕРЖАЩЕГО СЫРЬЯ

Статья в формате PDF 124 KB...

21 12 2019 13:41:18

ВЛИЯНИЕ ТЕРАПИИ БИЛЬТРИЦИДОМ И УРСОСАНОМ НА ЖЕЛЧНЫЙ ЛИТОГЕНЕЗ В РЕЗИДУАЛЬНУЮ ФАЗУ ОПИСТОРХОЗА

Обследовано 19 здоровых людей и 33 пациента с описторхозом и холелитиазом. Проведена сравнительная оценка некоторых показателей холестеринового, пигментного, белкового обмена в пузырной и печеночной порции желчи у обследованных пациентов до и после терапии бильтрицидом и урсосаном. Выявлено, что у пациентов с описторхозом и холелитиазом в эффективные сроки после монотерапии бильтрицидом отмечается значимое превышение концентрации непрямого билирубина, холестерина и белка в пузырной желчи по сравнению со здоровыми людьми, что свидетельствует о сохранении остаточных явлений при значительном улучшении пигментного обмена и снижении литогенных свойств желчи. Включение в схему подготовки и проведения антигельминтной терапии урсосана позволяет достигнуть наибольшего гиполитогенного состояния пузырной порции желчи в эффективные сроки после терапии бильтрицидом. ...

14 12 2019 3:22:54

НЕКОТОРЫЕ ПРОБЛЕМЫ КАЧЕСТВА ОБРАЗОВАНИЯ

Статья в формате PDF 207 KB...

09 12 2019 9:35:24

РАЗБИЕНИЕ СТРУКТУРИРОВАННОГО 3D ПРОСТРАНСТВА НА МОДУЛЯРНЫЕ ЯЧЕЙКИ И МОДЕЛИРОВАНИЕ НЕВЫРОЖДЕННЫХ МОДУЛЯРНЫХ СТРУКТУР

Обсуждаются разбиения 3D пространства на модулярные ячейки с целью последующего конструирования невырожденных модулярных 3D структур кристаллов. ...

08 12 2019 3:15:10

СТРУКТУРА ВИРУСНОЙ ПАТОЛОГИИ ЛОР-ОРГАНОВ

Статья в формате PDF 277 KB...

30 11 2019 12:31:11

УНИВЕРСИТЕТСКИЕ ПРОБЛЕМЫ НАУКИ И ОБРАЗОВАНИЯ

Статья в формате PDF 104 KB...

24 11 2019 2:12:26

КЛЕТКИ СТЕКЛОВИДНОГО ТЕЛА ГЛАЗА ЧЕЛОВЕКА

Статья в формате PDF 140 KB...

23 11 2019 23:12:34

СОВРЕМЕННОЕ СОЦИАЛЬНОЕ ОБРАЗОВАНИЕ В РОССИИ

Статья в формате PDF 128 KB...

19 11 2019 21:28:23

ЧИБИСОВ СЕРГЕЙ МИХАЙЛОВИЧ

Статья в формате PDF 309 KB...

17 11 2019 4:41:17

ЭХОГРАФИЧЕСКИЕ МАРКЕРЫ ВНУТРИУТРОБНОЙ ИНФЕКЦИИ

Одной из важнейших проблем современной перинатологии является прогрессирующий рост инфекционной патологии у плода и новорожденного. Целью данной работы являлась комплексная ультразвуковая оценка фето-плацентарной системы у беременных с высоким инфекционным индексом для прогнозирования степени тяжести внутриутробного инфицирования у новорожденного. Обследовано 123 беременных в сроке гестации 30-36 недель. В зависимости от тяжести состояния все новорожденные ретроспективно были разделены на 4 группы. В контрольную (1 группа) вошли новорожденные от матерей с неосложненной беременностью, состояние ребенка при рождении удовлетворительное. В основную (1 – 4 группы) вошли новорожденные от матерей с высоким инфекционным индексом, с локальными или генерализованными проявлениями внутриутробной инфекции. В результате проведенного исследования выявлены эхографические маркеры амнионита, плацентита и собственно инфекционного поражения плода, которое наиболее значимо для прогнозирования рождения ребенка с В У И. Патологические показатели биофизической активности, допплерометрия отражают системные нарушения в состоянии плода, его дисстресс. Таким образом, чем больше эхографических маркеров внутриутробного инфицирования встречается у плода, тем более вероятно рождение ребенка с признаками В У И. ...

16 11 2019 21:37:51

РЕУТОВ ВАЛЕНТИН ПАЛЛАДИЕВИЧ

Статья в формате PDF 320 KB...

13 11 2019 0:41:15

Качество жизни детей, больных вирусными гепатитами

Статья в формате PDF 136 KB...

11 11 2019 21:46:40

Еще:
Обзоры -1 :: Обзоры -2 :: Обзоры -3 :: Обзоры -4 :: Обзоры -5 :: Обзоры -6 :: Обзоры -7 :: Обзоры -8 :: Обзоры -9 :: Обзоры -10 :: Обзоры -11 ::

Последовательность подготовки научной работы может быть такой:

Выбор темы. Это важный этап. Во-первых, тема должна быть интересна не только вам, но и большинству слушателей, которым вы будете её докладывать, чтобы вы видели заинтересованность в их глазах, а не откровенную скуку.

Выбор целей и задач своей научной работы. То есть, нужно сузить тему. Например, тема: «Грудное вскармливание», сужение темы: «Грудное вскармливание среди студенток нашего ВУЗа». И если общая тема мало кому интересна, то суженная до рамок собственного института или университета, она становится интересной практически для всех слушателей. Целью может стать: «Содействие оптимальным условиям вскармливания грудью детей студентов нашего ВУЗа», а задачей — доказать, что специальные условия, созданные для кормящих студенток, не помешают их успеваемости, но уменьшат количество пропусков, академических отпусков и способствуют выращиванию здоровых детей — нашего будущего. Понятно, что эта тема подходит для студентов медицинских и педагогических ВУЗов, но и в других учебных учреждениях можно найти темы, интересные всем.

Разработать методы исследования и сбора информации. В случае с естественным вскармливанием, скорее всего, это будет анкетирование студенток, имеющих детей.

Систематизировать материал и подготовить презентацию.

Подготовиться к выступлению.

Выступить и получить: награду, удовольствие и опыт, чтобы в следующем году выступить ещё лучше и сорвать шквал аплодисментов, стать узнаваемым, а значит — более конкурентоспособным!