IT-Reviews    

ЕСТЕСТВЕННОНАУЧНЫЕ ОСНОВАНИЯ СТЕРЕОХРОНОДИНАМИКИ

c78089d0 Источник:
Вертинский П.А. Статья в формате PDF 161 KB

1. Вступление (о названии)

В истории физики от Аристотеля [1] до наших дней использовались многочисленные названия физических теорий, среди которых встречаются лаконичные (динамика, оптика...), составные (термодинамика, гидродинамика, электродинамика...), феноменологические (молекулярная физика, атомная физика...), многословные (специальная теория относительности, релятивистская теория гравитации...), но при внимательном рассмотрении каждого из названий мы вынуждены признать, что все названия являются феноменологическими, так как имеют своим предметом один или комплекс определенных, специально выделенных феноменов природы: взаимодействие тел, течение жидкостей или газов, тяготение...

Одновременно с исследованиями во всех областях многочисленных феноменологических теорий на протяжении всей истории физики учёные каждый раз убеждались, что в действительности ПРИРОДА едина, но многообразна в проявлениях частных своих свойств...

Этим обстоятельством и объясняется стремление физиков с эпохи А. Эйнштейна создать единую теорию поля (ЕТП), в которой бы объединялись законы электродинамики и тяготения, механики и оптики...[1], [2].

Такую теорию следовало бы назвать теорией единого поля (ТЕП), но исторически физика уже накопила знания о свойствах и законах многочисленных феноменов, которые мы называем полями электрическим, магнитным, гравитационным..., поэтому название «ТЕП» приведёт к недоразумениям, вызывая ассоциацию ещё об одном физическом поле...[2], [3]. Вместе с тем, преследуя цель изучить единые, самые общие законы и свойства материальной природы, атрибутами (неотъемлимыми свойствами) которой являются пространство и время, можно в соответствии с традицией использования древнегреческих терминов назвать этот подход стереохронодинамикой (СХД).

2. Происхождение проблемы

26 мая 1917 года Нобелевский лауреат, организатор и председатель Сольвеевских Конгрессов физиков Г. А. Лоренц по просьбе профессора Лейденского Университета П. Эренфеста представил на заседании Амстедамской Академии доклад П. Эренфеста «Каким образом в фундаментальных законах физики проявляется то, что пространство имеет три измерения?», в котором П. Эренфест выразил вековечную мечту мыслителей о ясном представлении себе всех свойств нашего мира [4]. Действительно, задолго до И. Р. Пригожина [5] специалисты из различных отраслей знания заподозрили существование различных размерностей в мирах различной природы: биологи и историки, геологи и химики, математики и философы с изумлением наблюдали такое поведение своих объектов, словно эти объекты находились в пространствах различных размерностей. Яркие примеры, иллюстрирующие этот феномен, можно привести из области физики ядерных сил, поведение которых резко отличается от поведения всех других сил в Природе, а фрактальная геометрия природы Р. Мандельброта [6] наглядно показала объективность такого феномена - зависимость размерности пространства от природы процессов. Совершенно ясно, что с целью исследования этой проблемы прежде всего необходимо обратиться к тем фундаментальным категориям, которые характеризуются размерностью. Как известно, современная топология широко применяет эту величину - размерность для своих категорий множества и многообразия, пространства и континуума, являющихся основными предметами топологических исследований.

3. Естественные модели содержания категорий топологии

Привлекая знания не только топологии, но и естественных наук, здесь с учётом корневых смысловых значений слов приходится отметить всего ПЯТЬ уровней иерархии категорий [7]:

I. Континуумы             (множеств).

II. Множества              (многообразий).

III. Многообразия        (пространств).

IV. Пространства        (миров конкретной природы).

V. Миры                       (взаимодействий конкретной природы).

Особенности этапов эволюции самоорганизующихся систем позволяют нам обозначить эти этапы соответствующими названиями как этапы S - образного закона эволюции систем (ПЯТЬ этапов):

  1. самозарождение системы
  2. самостановление _ « _
  3. самоутверждение _ « _
  4. самосовершенствование _ « _
  5. самовырождение _ » _

Из последнего нашего вывода об эволюции систем приходится отметить корреляцию иерархии систем и этапов их S - образного закона эволюции, то есть соответствующее усложнение системы с достижением определенного этапа развития. Другими словами, более совершенная система является более сложной, включает в себя больше подсистем, или каждая надсистема является более развитой по отношению своих подсистем. Таким образом, отмечая иерархию миров по степени их развития можно отметить следующие ступени эволюции природы движения:

  1. Физические миры.
  2. Химические миры.
  3. Биологические миры.
  4. Психические миры.
  5. Социальные миры.

При этом периодичность свойств материальных объектов (частиц, атомов, молекул, кристаллов, растений, животных, социумов...) порождается очередным распространением аналогий форм связей на всех ступенях иерархии. Законы - выражения связей, сохраняясь по форме, наполняются в каждой ступени своим конкретным (физическим, химическим, биологическим, психологическим, социологическим) содержанием. В связи с отмеченным обстоятельством вполне понятна гносеологическая причина значительных затруднений в систематике различных научных дисциплин, которые мы выше заметили, например, в химии (Закон Д, И. Менделеева), в биологии (систематика биологических видов) и т.п. Поэтому представляется целесообразным здесь ввести определенность при указании заданного уровня иерархии, например, арабской нумерацией со скобками, латинским алфавитом, греческим алфавитом и т.п. Из всего обилия возможных вариантов, принципиально равноправных на применение, исходя из практического удобства использования шрифтов и символов условимся латинскую нумерацию (I, II, III, IV, V) оставить за начальным уровнем иерархии, тогда арабская нумерация может применяться для очередного уровня иерархии с указанием степени, соответствующей порядку иерархической ступени, традиционно степень = 1 указывать не будем:

1.Физические миры:

12 Частицы

                  22 Кластеры

                                     32 Ядра

                                                  42 Атомы

                                                                  52 Тела

Примечательным примером периодизации миров является известная периодическая таблица химических элементов Д. И. Менделеева, которая первоначально была им исполнена в виде ПЯТИ периодов. Проведенные в течение XX века различные модификации и усовершенствования этой таблицы на основе продолжающихся новых и новейших достижений атомной физики не могут быть приняты безупречными и окончательными, так как, например, до сих пор не выявлены четкие границы между последовательно заполняющимися электронами энергетическими уровнями, как это мы видели выше на примере плотности вещества в атоме. Но иерархии химических веществ, изученных за много веков, позволяют нам довольно определенно отметить именно ПЯТЬ уровней их иерархии, продолжение которой для всех миров приводит к периодической системе миров:

Например, категорию ЧЕЛОВЕК РАЗУМНЫЙ в этой нумерации можно обозначить, опуская промежуточные ступени, так:

V.Миры:

31. Биологические миры:

                                 52. Животные:

                                              53. Млекопитающие:

                                                                       54 .Приматы:

                                                                                      55 .Человек, то есть: (V-31-52-53-54 -55)

Невольно на себя обращает внимание обозначение человека ПЯТОЙ ступенью иерархии в биологических мирах - возможно, человек разумный действительно является венцом природы, а не просто так нами принято из наших амбиций?

4. Естественные модели размеров и размерностей в категориях топологии

С естественнонаучной точки зрения [8] определения размерностей , и  в сущности сводятся к следующим выражениям, придерживаясь терминологии и символики первоисточников:

1. Малая индуктивная размерность  пространства Х равна n, если у каждой точки х есть сколь угодно малые окрестности, границы которых имеют размерность n-1 (в смысле ). Размерность пустого множества Ǿ = 0.

2. Большая индуктивная размерность  пространства Х равна n, если для любых его двух не пересекающихся множеств найдётся n-1- мерное замкнутое множество, разделяющее их. Также  Ǿ=0.

3. Размерность  пространства Х, определяемая с помощью покрытий пространства Х, равна n, если минимальная кратность сколь угодно малых покрытий пространства Х равна n+1.

Таким образом, ни одно из этих утверждений, справедливых по существу нахождения величины размерности соответствующих пространств, не может являться определением размерности в логическом смысле, так как логически строгое определение категории, как это мы уже видели на примере определений категорий топологии [7] континуума, множества, многообразия, пространства, требует подведения определяемой категории под более широкое понятие, такую категорию, которая является более общей по отношению к определяемой, отличающейся от боле общего своими частными особенностями. В приведенных выше топологических определениях размерности указывается на принадлежность этой категории к числу, но не указывается нигде на особенности этого числа от других чисел, не являющихся размерностью (числом линий, поверхностей, точек...).

ПЕРИОДИЧЕСКАЯ СИСТЕМА МИРОВ

Так как в работе [8] мы обнаружили, что переходя от уровня к уровню (от вида к виду) иерархии движений, в каждом мире взаимодействие сводится к изменению величины некоторого параметра (расстояния, размера, количества, величины...), то есть: взаимодействие = движение = изменение качества = изменение величины некоторого параметра, то наш вывод, что изменение размерности - суть изменение количества независимых свойств системы (изменение качества системы) означает определение размерности как числа независимых свойств системы, которыми в частном и самом абстрактном случае могут служить в простейшем геометрическом смысле пространственные направления - оси координат, как это представляется на рис. 1 и рис. 2:

  

Рис. 1                                                     Рис. 2

Так как размерность является числом независимых свойств, то в случаях гомогенных миров, когда все направления изотропны, можно за координаты принимать геометрические направления под 90О, то есть применить ортогональную систему координат, так как cos90°=0, а sin90°=1 , позволяя проекциям осей друг на друга превращаться в 0, то есть обеспечивать «независимость». Именно этот смысл - независимость - несёт на себе наше изображение на рис.1 и рис.2 дополнительного свойства по оси под 90о к заданному направлению уже известного свойства (длины, ширины...)

В случаях гетерогенных миров, когда направления анизотропны, такие условия «независимости» обеспечить невозможно, поэтому и условия «ортогональности» теряют своё значение, в этих мирах координаты по своему происхождению, по своей природе, «по определению» независимы. Например, P,V,T - в законах газового состояния и т.п. А в общем смысле могут быть любые, принимаемые за независимые параметры, как это мы полагаем, например, в функциональных пространствах (PVT закон состояния газов) и т.п., где при углубленном подходе можно показать взаимную зависимость избранных базисных осей-параметров...(вспомним из предисловия в работе [1]:

                  (1).

В качестве наглядной иллюстрации изложенных суждений воспользуемся нашим примером на рис. 3 изменения размерностей из работы [5]:

1. К 1-мерной линии (метр) добавляем новое направление - образуется двумерная плоскость (м2)

2. К 2-мерной плоскости (м2) добавляем новое направление - образуется трёхмерный объём (м3)

3. К 3-мерному объёму (м3) добавляем новое направление-свойство - давление (Па) - образуется функциональное пространство - изотермический процесс по закону Бойля - Мариотта.

4. К 3-мерному объёму (м3) добавляем новое направление - температуру (оК) - образуется функциональное пространство - изобарический процесс по закону Гей-Люссака.

5. К трёхмерному объёму (м3) добавляем два новых направления - температуру (оК) и давление (Па) - образуется функциональное пространство - процесс по закону Клайперона-Клаузиуса-Менделеева. Перечисление подобных примеров можно продолжать неопределенно долго, но уже из сказанного можно вполне обоснованно заключить, что всякий раз увеличение размерности путём добавления нового независимого направления приводит к образованию нового качественного состояния системы - функциональному пространству, характеризуемому новой величиной, выраженной в соответствующих новых единицах измерения!

Рис. 3 (Рис. 8 по [8])

Так как единицы измерения длины - одномерной категории не могут быть использованы для измерения площади поверхности - двумерной категории, требующей новых единиц измерения - единиц площади, которые не могут применяться в трёхмерной категории - объёмных телах и т.д., то мы вправе представить себе, что все возможные единицы измерения, как проявления свойств соответствующих категорий являются атрибутом своих категорий, существуют, то есть содержатся в самом понятии категории: способность длины иметь определенную величину в соответствующих единицах длины, способность площади поверхности иметь определенную величину в единицах площади, способность объёма тела иметь определенную величину в единицах объёма и т.д., и т.п.

СПИСОК ЛИТЕРАТУРЫ

  1. Вайскопф В. Физика в двадцатом столетии. М., «Атомиздат», 1977.
  2. Логунов А. А. «Релятивистская теория гравитации и новые представления о пространстве-времени // Вестник МГУ . Физика. Астрономия. т. 27, вып. 6, 1986, стр.3 и далее.
  3. Дирак П. А. Воспоминания о необычайной эпохе, пер. с англ. М., «Наука», 1990, стр.178 и др.
  4. Вертинский П.А. Финитность и сингулярность в понятии размерности пространства // VМНС, Красноярск, 2002.
  5. Пригожин И.Р. и Стенгерс И. Порядок из хаоса. Новый диалог человека с природой. М., «Прогресс», 1986, стр. 275, 364 и др.
  6. Мандельброт Б. Фрактальная геометрия природы. М.: ИКИ, 2002,стр.46, 144, 326.
  7. Вертинский П. А. Естественнонаучные модели содержания категорий топологии // Сб.IX МНС, Красноярск,2006.
  8. Вертинский П.А. Естественные модели размеров и размерностей в категориях топологии//Сб. X МНС, Красноярск, 2007,
  9. Мозерова А., Хайри А., Хузар Ш. Экологическое образование для устойчивого развития // Фундаментальные исследования, № 1, 2009. - C. 97-98.



Отзывы (через Facebook):

Оставить отзыв с помощью аккаунта FaceBook:

ПОДЖЕЛУДОЧНАЯ ЖЕЛЕЗА У БЕЛОЙ КРЫСЫ

Статья в формате PDF 297 KB...

17 01 2021 16:12:52

ФУНКЦИИ АПОПТОЗА В РАЗВИТИИ И ЛЕЧЕНИИ БОЛЕЗНЕЙ

Статья в формате PDF 96 KB...

07 01 2021 2:50:26

КРАСОТА КАК СОЦИАЛЬНЫЙ КОНСТРУКТ

Статья в формате PDF 339 KB...

05 01 2021 16:20:14

ИСТОРИЯ РАЗВИТИЯ ИСТИННЫХ УЧИТЕЛЕЙ

Статья в формате PDF 104 KB...

01 01 2021 19:49:48

О НАХОЖДЕНИИ ОБЪЕМОВ ТЕЛ ВРАЩЕНИЯ

Статья в формате PDF 271 KB...

26 12 2020 15:34:22

КОВАЛЕВ АНАТОЛИЙ СПИРИДОНОВИЧ

Статья в формате PDF 338 KB...

17 12 2020 21:48:31

СТРОИТЕЛЬНАЯ АКУСТИКА

Статья в формате PDF 152 KB...

13 12 2020 20:27:45

КОНВЕКЦИЯ СМЕСЕЙ В МАГНИТНОМ ПОЛЕ

Получены уравнения конвекции и конвективной диффузии двухкомпонентных смесей в магнитном поле. Исследованы различные частные случаи. Решена задача о конвективном движении смеси вблизи вертикальной пластины, на поверхности которой происходит гетерогенная химическая реакция. Библиогр. 4 назв. ...

11 12 2020 5:38:27

ДИНАМИКА СОДЕРЖАНИЯ БЕЛКОВ В СЫВОРОТКЕ КРОВИ СЕГОЛЕТОК КАРПА ПРИ ХРОНИЧЕСКОМ ВОЗДЕЙСТВИИ ТЯЖЕЛЫХ МЕТАЛЛОВ

Изучено влияние солей кадмия, свинца и марганца на содержание белков в сыворотке крови сеголеток карпа. Показаны разнонаправленные изменения белкового состава сыворотки крови рыб при воздействии солей тяжелых металлов, о чем можно судить на основании изменения А/G индекса. При хроническом действии ионов кадмия отмечено значительное преобладание суммарного содержания альбуминов над глобулинами на протяжении всего эксперимента, пребывание рыб в среде с ионами свинца сопровождалось более значительным ростом содержания глобулинов, тогда как при действии ионов марганца не выявлен однонаправленный характер изменения соотношения альбуминов и глобулинов. ...

08 12 2020 3:42:48

СТУПЕНЧАТЫЕ ПРЕДСТАВЛЕНИЯ НА ГРАФАХ

Статья в формате PDF 127 KB...

03 12 2020 11:44:34

ЧЕСТЬ КАК КАТЕГОРИЯ ПРАВА, ФУНДАМЕНТАЛЬНАЯ ОСНОВА ЕГО СОБЛЮДЕНИЯ

Представленная статья посвящена исследованию понятия честь в качестве фундаментальной категории права. В работе отмечено, что основой для соблюдения права, уважения к закону является честь. Данное понятие включает в себя такие качества, как целомудрие и благородство. Основным же назначением государства является защита чести своих граждан. Эта высокая миссия тесно связана с единственной целью государственности как формы человеческого бытия – с содействием духовному возрастанию человека. ...

02 12 2020 19:15:28

НООСФЕРНОЕ ОБРАЗОВАНИЕ – ОТ ПРОШЛОГО К БУДУЩЕМУ

Статья в формате PDF 119 KB...

22 11 2020 14:28:41

МЕТОДИКА ПРЕПОДАВАНИЯ DELPHI: ОТ ПРОСТОГО К СЛОЖНОМУ

Статья в формате PDF 425 KB...

19 11 2020 22:29:58

The Society for Worldwide Interbank Financial Telecommunication

Статья в формате PDF 320 KB...

27 10 2020 0:36:39

ГРИПП. КЛИНИЧЕСКАЯ СИМПТОМАТИКА

Статья в формате PDF 146 KB...

18 10 2020 2:48:35

ИММУНОЛОГИЯ (учебное пособие)

Статья в формате PDF 137 KB...

17 10 2020 7:45:37

CLAMIDIOSIS AND UREAPLASMOSIS AT MOTHERS AND THE BIRTH OF CHILDREN WITH ILLNESS OF DOWN

Статья в формате PDF 108 KB...

05 10 2020 20:28:15

КОНФОРМАЦИОННАЯ ИЗОМЕРИЗАЦИЯ МЕТИЛБОРНОЙ КИСЛОТЫ

Статья в формате PDF 127 KB...

01 10 2020 23:24:16

Упрочнение методом наплавки легирующими металлами

Статья в формате PDF 259 KB...

27 09 2020 16:50:12

ХОРУНЖИН ВЛАДИМИР СТЕПАНОВИЧ

Статья в формате PDF 174 KB...

23 09 2020 1:22:45

АНАЛИЗ СТРУКТУР КРИСТАЛЛОВ ЗАМОРОЖЕННОЙ БИОЛОГИЧЕСКОЙ ЖИДКОСТИ В 3D-ФОРМАТЕ

В работе рассмотрен вопрос исследования биологической жидкости в формате 3D. ...

22 09 2020 1:44:25

ПИЩЕВЫЕ ВОЛОКНА СКОРЦОНЕРА И ОВСЯНОГО КОРНЯ И ИХ ЛЕЧЕБНО-ПРОФИЛАКТИЧЕСКОЕ ИСПОЛЬЗОВАНИЕ

Изучен химический состав нетрадиционного инулинсодержащего сырья Scorzonera hispanica L. и Tragopogon porrifolius L. Получены полисахаридные концентраты и установлена их антибактериальная и гипогликемическая активности. Прогнозируется их использование в качестве лечебно-профилактических комплексов. ...

13 09 2020 22:55:57

СРАВНИТЕЛЬНАЯ ОЦЕНКА ВЛИЯНИЯ РАДИАЦИИ, ГИПОТИРЕОЗА И РТУТНОЙ ИНТОКСИКАЦИИ НА АКТИВНОСТЬ ФЕРМЕНТОВ ОБМЕНА ПУРИНОВЫХ НУКЛЕОТИДОВ, АНТИОКСИДАНТНОЙ СИСТЕМЫ И ИММУННЫЙ СТАТУС

В эксперименте в сравнительном плане, изучено влияние радиационного облучения, ртутной интоксикации и гипотиреоза на систему иммунитета, на активность ферментов обмена пуриновых нуклеотидов: 5’-нуклеотидазы, А М Ф-дезаминазы и аденозиндезаминазы, на активность ферментов антиоксидантной системы: супероксиддисмутазы ( С О Д), глутатионпероксидазы ( Г П О), глутатионредуктазы в ткани печени, почек и в сыворотке крови. Установлены значительные сходства в механизме клеточных и метаболических эффектов радиации, гипотиреоза, ртутной интоксикации. Независимо от ткани и воздействующего на организм фактора (радиация, гипотиреоз, ртутная интоксикация) имеет место однотипные изменения активности супероксиддисмутазы, глутатионпероксидазы и глутатионредуктазы, что свидетельствует о том, что указанные воздействия являются стрессорными. Изменения в иммунной системе, обнаруженные при ионизирующем излучении, практически однотипны изменениям иммунитета при гипотиреозе. При ртутной интоксикации в отличие от гипотиреоза и радиации имеет место снижение уровня В-лимфоцитов, что в какой-то мере объясняется особенностями эффектов ртутной интоксикации на систему иммунитета и ферменты метаболизма пуриновых нуклеотидов. В определенной степени эти различия можно объяснить разной степенью становления защитных механизмов и степенью целостности регуляторной функции адрено-тиреоидной системы. ...

12 09 2020 18:55:34

ФОРМИРОВАНИЕ СИСТЕМЫ МЕНЕДЖМЕНТА КАЧЕСТВА В ВУЗЕ

Статья в формате PDF 146 KB...

07 09 2020 5:27:23

ЭКОЛОГИЧЕСКАЯ ПАУЗА ЧЕЛОВЕЧЕСТВА

Статья в формате PDF 157 KB...

06 09 2020 17:23:16

ПРОБЛЕМЫ ЕСТЕСТВЕННОНАУЧНОГО ОБРАЗОВАНИЯ

Статья в формате PDF 225 KB...

04 09 2020 2:24:58

МИГРАЦИЯ ТЯЖЕЛЫХ МЕТАЛЛОВ ЧЕРЕЗ ВРЕДНЫЕ ПРИВЫЧКИ

Статья в формате PDF 110 KB...

02 09 2020 10:46:39

Еще:
Обзоры -1 :: Обзоры -2 :: Обзоры -3 :: Обзоры -4 :: Обзоры -5 :: Обзоры -6 :: Обзоры -7 :: Обзоры -8 :: Обзоры -9 :: Обзоры -10 :: Обзоры -11 ::

Последовательность подготовки научной работы может быть такой:

Выбор темы. Это важный этап. Во-первых, тема должна быть интересна не только вам, но и большинству слушателей, которым вы будете её докладывать, чтобы вы видели заинтересованность в их глазах, а не откровенную скуку.

Выбор целей и задач своей научной работы. То есть, нужно сузить тему. Например, тема: «Грудное вскармливание», сужение темы: «Грудное вскармливание среди студенток нашего ВУЗа». И если общая тема мало кому интересна, то суженная до рамок собственного института или университета, она становится интересной практически для всех слушателей. Целью может стать: «Содействие оптимальным условиям вскармливания грудью детей студентов нашего ВУЗа», а задачей — доказать, что специальные условия, созданные для кормящих студенток, не помешают их успеваемости, но уменьшат количество пропусков, академических отпусков и способствуют выращиванию здоровых детей — нашего будущего. Понятно, что эта тема подходит для студентов медицинских и педагогических ВУЗов, но и в других учебных учреждениях можно найти темы, интересные всем.

Разработать методы исследования и сбора информации. В случае с естественным вскармливанием, скорее всего, это будет анкетирование студенток, имеющих детей.

Систематизировать материал и подготовить презентацию.

Подготовиться к выступлению.

Выступить и получить: награду, удовольствие и опыт, чтобы в следующем году выступить ещё лучше и сорвать шквал аплодисментов, стать узнаваемым, а значит — более конкурентоспособным!