ТУННЕЛЬНЫЙ ЭФФЕКТ И ПРОТОННАЯ РЕЛАКСАЦИЯ В ЭЛЕКТРОТЕХНИЧЕСКИХ МАТЕРИАЛАХ > Научные обзоры
IT-Reviews    

ТУННЕЛЬНЫЙ ЭФФЕКТ И ПРОТОННАЯ РЕЛАКСАЦИЯ В ЭЛЕКТРОТЕХНИЧЕСКИХ МАТЕРИАЛАХ

Источник:
Тимохин В.М. Статья в формате PDF 138 KB

При исследовании спектров термостимулированных токов деполяризации (ТСТД) ряда электротехнических материалов (слюд флогопита и мусковита, онотского талька и полученной из него стеатитовой керамики, а также кристаллов иодата лития, применяемого в лазерных технологиях и оптоволоконных линиях связи) обнаружено 7 максимумов. В результате прокаливания и легирования образцов кислотой HCl и щёлочью NH4OH определены релаксаторы, ответственные за их появление, и их параметры, а именно, Н3О+, ОН-, комплексы VL и VD (вакансия + L или D дефекты), молекулы кристаллизационной и адсорбированной воды. На спектрах tgδ(ν,T) впервые обнаружено 5 температурных максимумов, причём низкотемпературный максимум при Т=90К дал энергию активации (0,02-0,03)эВ, что оказалось даже ниже, чем для аналогичного максимума спектра ТСТД, где было получено 0,05эВ. Исследования проводились по методике и на установке, защищённые патентом [1].

Вклад электронной проводимости при низких температурах, очевидно, очень мал, т.к. ширина запрещённой зоны в этих материалах равна (4-6)эВ. Чисто протонной проводимости здесь тоже нет, так как температурный спектр удельной электропроводности показал наличие двух наклонов для зависимости lnγ = f(103/Т), которые, судя по энергии активации, объясняются миграцией дефектов Н3О+ и ОН- , причиной появления которых является прыжковая диффузия и туннелирование протонов через кристаллическую решётку между слоями воды и слоями силикатных (в слюдах и тальке) SiO  ионов [2,3]. Протоны согласно статистической модели совершают быстрые перескоки туда и обратно между двумя устойчивыми положениями вдоль водородной связи. В результате колебаний соседних ионов SiO44- может возникнуть такая ориентация, при которой потенциальный барьер сужается и облегчается туннельный переход протона между этими ионами.

Экспериментально туннельный эффект проявляется в момент, когда максимум tgδ(ν,T) прекращает смещаться к низким частотам при понижении температуры материала. Это выражается в том, что время релаксации остаётся постоянным. Температура проявления туннельного эффекта является характеристикой материала, например, для сульфата кальция (природного) Ттунн=124К, для прокалённого Ттунн=145К, для талька (природного) Ттунн=112К, для прокалённого Ттунн=125К, для иодата лития (природный) Ттунн= 175К. Интересным представляется точное совпадение температур максимумов на спектрах термостимулированной люминесценции (ТСЛ), полученных после облучения рентгеном, и ТСТД, то есть одни и те же релаксаторы являются причиной появления максимумов ТСЛ и ТСТД, что полностью подтверждает наши выводы о природе релаксационных процессов в изученных материалах.

В квантовой механике для микроскопических частиц должен выполняться принцип неопределённости. Неопределённость координаты равна ширине барьера , следовательно, импульс определяется с неопределённостью . Тогда можно оценить неопределённость энергии . Известно, что вероятность найти частицу на определённом участке барьера равна квадрату волновой функции [4]

Поэтому частицу можно найти внутри барьера при условии, когда показатель экспоненты равен единице, то есть

 или

Отсюда

или тем более

.                   (1)

Опыт показал, что при Т=100К U=0,05эВ, а максимум 1 в спектре ТСТД появляется при напряжённостях поляризующего электрического поля порядка (1-5).106В/м. То есть протон получает достаточную энергию для преодоления барьера туннельным способом. В этом случае получаем из выражения (1) . Следовательно, возможность обнаружения протона справа от барьера не противоречит закону сохранения энергии.

Решение уравнения Шрёдингера для прямоугольного барьера конечной ширины [4] позволяет получить вероятность обнаружения частицы внутри барьера, т.е. коэффициент прозрачности барьера.

, где a=2.

.

Следовательно, через барьер туннелируют 0,11% падающих на него протонов, а это вполне заметная величина, если учесть достаточно большую концентрацию протоносодержащих дефектов Н3О+, ОН-, Н2О и самих протонов, что составляет величину более 1019 м-3. Опыт подтвердил, что сила тока максимума №1 ТСТД имеет величину (10-15-10-14)А. Из спектров tgδ энергия активации низкотемпературного максимума при 90К равна (0,02-0,03)эВ. Т.е. в этом случае вероятность туннелирования протонов будет ещё больше. Для барьера параболической формы коэффициент прозрачности можно выразить формулой

.

Но здесь зависимость гораздо сложнее, например,

,

где  - постоянный параметр, d- ширина барьера. В этом случае ширина барьера в верхней части уменьшается, что сильно влияет на его прозрачность в сторону увеличения.

Таким образом, теоретически и экспериментально доказана возможность туннелирования протонов [5] и протонно-ионная проводимость в исследованных материалах. Исследование механизмов диэлектрической релаксации и электропроводности этих материалов позволило разработать диагностику типа и концентрации дефектов и нанотехнологию получения и диагностики протонных проводников и полупроводников n- и p-типа на базе материалов с водородными связями в результате легирования их примесями типа HCl, NH4OH, диагностика которых проводится по спектрам ТСТД, tgδ(ν,Т) и электропроводности [6]. Это позволило решить одну из актуальных фундаментальных проблем науки и практики по диагностике электротехнических материалов в агрессивных средах и при низких температурах, что привело к разработке ряда практических технологий.

СПИСОК ЛИТЕРАТУРЫ

  1. Тимохин, В.М. Пат. №2348045 РФ МПК G 01N 27/00. Многофункциональное устройство для исследования физико- технических характеристик полупроводников, диэлектриков и электроизоляционных материалов .- №2007116909/28; заявл. 04.05.2007; опубл. 27.02.2009, Бюл.№6.
  2. Тимохин, В.М. Механизм диэлектрической релаксации и протонная проводимость в наноструктуре -LiIО3. Известия вузов. Физика. Томск. СФТИ.- 2009. -№ 3. -С.46-50.
  3. Тимохин, В.М. Диэлектрическая спектроскопия изоляционных и оптических материалов судовых машин и автоматики. - Новороссийск: РИО НГМА, 2005. - 152с.
  4. Шпольский, Э.В. Атомная физика.-М.: Наука,1974.-575с.
  5. Тимохин, В.М. Пат. №2347216 РФ МПК G 01N 27/00, G 01N 25/00. Способ определения температуры появления туннельного эффекта в диэлектриках и электроизоляционных материалах.-№2007100756/28; заявл. 09.01.2007; опубл. 20.02.2009, Бюл.№5.
  6. Тимохин, В.М. Пат. №2360239 РФ МПК G 01N 27/20. Способ получения протонной проводимости в кристаллах и электроизоляционных материалах .- №2007144056/28; заявл. 27.11.2007; опубл. 27.06.2009, Бюл. №18.



Отзывы (через Facebook):

Оставить отзыв с помощью аккаунта FaceBook:


ЖАК СЕРГЕЙ ВЕНИАМИНОВИЧ

Статья в формате PDF 115 KB...

19 07 2021 19:49:12

PROBLEMS OF BIOCHEMICAL INDICATION OF STATUS OF FISHES OF NORTH BASIN

Статья в формате PDF 127 KB...

18 07 2021 8:56:50

УПРАВЛЕНИЕ АДАПТИВНЫМИ ОБРАЗОВАТЕЛЬНЫМИ СИСТЕМАМИ

Статья в формате PDF 124 KB...

17 07 2021 7:29:17

ЭКОЛОГИЧЕСКАЯ ПАУЗА ЧЕЛОВЕЧЕСТВА

Статья в формате PDF 157 KB...

14 07 2021 20:46:46

СПАМ-ФИЛЬТРЫ И БЛОКИРАТОРЫ

Статья в формате PDF 276 KB...

13 07 2021 4:24:40

О ПРИНЦИПЕ РАБОТЫ ЛЮСТРЫ ЧИЖЕВСКОГО

Статья в формате PDF 141 KB...

09 07 2021 21:49:18

Клиника и лечение кишечного амебиаза

Статья в формате PDF 104 KB...

06 07 2021 8:45:13

КУЛЬТУРОЛОГИЯ: СОЦИОДИНАМИКА КУЛЬТУРЫ

Статья в формате PDF 252 KB...

02 07 2021 17:44:22

Доминирования эго-защитных механизмов у студентов

Статья в формате PDF 131 KB...

29 06 2021 9:28:45

Внутривидовое разнообразие Yersinia pestis

Статья в формате PDF 131 KB...

23 06 2021 8:47:18

ПОНЯТИЕ И ПРОБЛЕМЫ ПРОТИВОДЕЙСТВИЯ КИБЕРТЕРРОРИЗМУ

Статья в формате PDF 262 KB...

22 06 2021 15:38:46

ИСТОЧНИКИ И УСЛОВИЯ РАЗВИТИЯ СУБЪЕКТНОСТИ ЛИЧНОСТИ

Статья в формате PDF 138 KB...

20 06 2021 12:12:54

ОКРУЖАЮЩАЯ СРЕДА И ГЕОГЕЛЬМИНТОЗЫ

Статья в формате PDF 237 KB...

16 06 2021 15:53:11

КОРЯК ЮРИЙ АНДРЕЕВИЧ

Статья в формате PDF 358 KB...

13 06 2021 17:10:38

Еще:
Обзоры -1 :: Обзоры -2 :: Обзоры -3 :: Обзоры -4 :: Обзоры -5 :: Обзоры -6 :: Обзоры -7 :: Обзоры -8 :: Обзоры -9 :: Обзоры -10 :: Обзоры -11 ::

Последовательность подготовки научной работы может быть такой:

Выбор темы. Это важный этап. Во-первых, тема должна быть интересна не только вам, но и большинству слушателей, которым вы будете её докладывать, чтобы вы видели заинтересованность в их глазах, а не откровенную скуку.

Выбор целей и задач своей научной работы. То есть, нужно сузить тему. Например, тема: «Грудное вскармливание», сужение темы: «Грудное вскармливание среди студенток нашего ВУЗа». И если общая тема мало кому интересна, то суженная до рамок собственного института или университета, она становится интересной практически для всех слушателей. Целью может стать: «Содействие оптимальным условиям вскармливания грудью детей студентов нашего ВУЗа», а задачей — доказать, что специальные условия, созданные для кормящих студенток, не помешают их успеваемости, но уменьшат количество пропусков, академических отпусков и способствуют выращиванию здоровых детей — нашего будущего. Понятно, что эта тема подходит для студентов медицинских и педагогических ВУЗов, но и в других учебных учреждениях можно найти темы, интересные всем.

Разработать методы исследования и сбора информации. В случае с естественным вскармливанием, скорее всего, это будет анкетирование студенток, имеющих детей.

Систематизировать материал и подготовить презентацию.

Подготовиться к выступлению.

Выступить и получить: награду, удовольствие и опыт, чтобы в следующем году выступить ещё лучше и сорвать шквал аплодисментов, стать узнаваемым, а значит — более конкурентоспособным!