IT-Reviews    

МОДЕЛЬ ПРОЦЕССА ПЕРЕНОСА КОЛИЧЕСТВА ЗАРЯДА – ЭЛЕКТРИЧЕСКАЯ ПРОВОДИМОСТЬ РАСТВОРОВ ХЛОРОВОДОРОДА В Н-СПИРТАХ

c78089d0 Источник:
Ангапов В.Д. Танганов Б.Б. Ранее авторами была показана применимость плазмоподобной теории растворов для расчетов эквивалентной электропроводности растворов различных электролитов в воде и этаноле. В данной статье были экспериментально измерены значения электропроводности хлороводорода в четырех н-спиртах (этаноле, пропаноле, бутаноле и пентаноле) при различных температурах (278-328К), а также получены расчетные значения электропроводности. Сделан вывод о хорошем соответствии расчетных данных экспериментальным. Статья в формате PDF 234 KB электропроводностьплазмоподобная теория электролитовхлороводородн-спиртыэтанолпропанолбутанолпентанол

Существующие теории растворов электролитов не дают полной картины состояния молекул и ионов в произвольном растворителе. Исследователи сталкиваются с большими трудностями при нахождении таких ключевых характеристик ионов в растворе как число сольватации, радиус сольватированного иона и энергия межмолекулярных взаимодействий.

Ранее [1-3] была предложена плазмоподобная теория электролитов, которая описывает раствор ионогена как систему зарядов, колеблющихся с плазменной частотой, зависящей как от свойств самого электролита, так и от макроскопических параметров среды. Авторами было показано, что данная теория удовлетворительно описывает диссипативные свойства водных растворов неорганических солей.

Целью данной работы было проверить справедливость плазмоподобной теории электролитов в неводных растворителях, в качестве которых были выбраны четыре н-спирта (этанол, пропанол, бутанол и пентанол). В качестве электролита была выбрана хлороводородная кислота, в качестве измеряемого параметра - эквивалентная электропроводность. Хлороводород был выбран не случайно, поскольку, как известно, ион водорода обладает специфическим эстафетным механизмом переноса в растворителях, и в настоящее время нет теории, достоверно описывающей его транспортные свойства.

Экспериментальная часть

Все спирты марки х.ч. были предварительно обезвожены согласно стандартным методикам [4-6], окончательно высушены над молекулярными ситами (3Å), хранились в них же под вакуумом. Содержание воды по Карлу-Фишеру [7] не превышало 0,01%. Хлороводород был получен взаимодействием хлорида калия (хч) с концентрированной серной кислотой (хч), осушен пропусканием через две склянки с кислотой и под вакуумом пропускался через колбу со спиртом. Растворы готовились методом последовательных разбавлений по массе, исходные концентрации были установлены четырехкратным титрованием 0.1М водным раствором гидроксида калия (хч) под атмосферным давлением.

Установка для измерения электропроводности растворов электролитов состояла из трех основных элементов: измерительной части, кондуктометрической ячейки и термостата [8].

Для измерений использовалась вакуумная ячейка из пирекса с тремя плоскопараллельными круглыми платиновыми электродами, покрытыми платиновой чернью. Измерение сопротивления растворов проводилось при частоте 1000 Гц. Для поддержания температуры в термостате использовалась схема с применением высокоточного регулятора температуры ВРТ-3 [9]. Точность поддержания температуры составляла ±0,01 К. Константа ячейки была установлена измерением сопротивления водных растворов KCl исследуемого диапазона концентраций. Полученные значения эквивалентной электропроводности приведены в табл. 1.

Таблица 1.

Экспериментальные данные эквивалентной электропроводности хлороводорода в н-спиртах
при различных температурах (λ [См·см2·моль-1], С [моль/л]).

1. Этанол

278К

288К

298К

308К

318К

328К

С·104

λ

С·104

λ

С·104

λ

С·104

λ

С·104

λ

С·104

λ

980,8

24,48

970,6

28,61

960,2

33,46

949,8

37,60

938,9

41,83

927,5

45,02

490,4

26,53

485,2

31,16

480,1

37,10

474,9

42,03

469,4

46,83

463,7

50,85

245,2

28,81

242,6

35,72

240,0

42,04

237,4

48,27

234,7

55,09

231,8

58,67

122,6

33,23

121,3

39,93

120,0

47,64

118,7

55,03

117,3

62,47

115,9

69,03

61,30

34,10

60,66

44,36

60,01

53,17

59,36

62,60

58,68

71,90

57,96

79,80

30,65

37,59

30,32

48,29

30,00

59,23

29,68

69,00

29,33

80,50

28,98

91,34

15,32

38,90

15,16

50,80

15,00

63,11

14,68

76,35

14,67

88,34

14,49

102,00

7,661

41,64

7,581

54,20

7,500

67,97

7,419

80,70

7,334

95,24

7,244

113,93

3,831

42,91

3,791

55,55

3,750

69,01

3,710

82,48

3,667

98,61

3,622

116,12

1,915

43,97

1,895

56,94

1,875

69,81

1,855

84,91

1,833

101,80

1,811

120,71

0,958

44,60

0,948

57,05

0,938

70,40

0,928

86,33

0,917

103,94

0,906

123,88

0,479

44,79

0,474

57,50

0,469

70,90

0,464

87,71

0,458

104,21

0,453

125,00

0

46,27

0

59,67

0

84,65

0

91,05

0

109,41

0

131,90

2. Пропанол

278К

288К

298К

308К

318К

328К

С·104

λ

С·104

λ

С·104

λ

С·104

λ

С·104

λ

С·104

λ

3393

6,05

3359

7,09

3325

8,18

3290

8,84

3256

9,82

3222

10,60

846,8

7,50

838,4

9,23

829,8

11,60

821,2

12,60

812,6

14,10

804,2

16,10

423,4

8,77

419,2

10,80

414,9

13,10

410,6

15,10

406,3

17,20

402,1

18,90

211,7

9,25

209,6

11,70

207,5

14,50

205,3

18,20

203,2

20,60

201,0

22,20

105,8

10,60

104,8

14,10

103,7

17,30

102,6

20,50

101,6

23,50

100,5

27,42

52,92

12,20

52,39

15,70

51,86

19,40

51,32

24,90

50,79

29,20

50,26

32,91

26,46

13,60

26,20

17,80

25,93

24,20

25,66

30,00

25,39

34,90

25,13

39,79

13,23

14,80

13,10

19,10

12,97

25,70

12,83

32,60

12,70

41,40

12,56

48,20

6,615

16,21

6,549

21,00

6,482

27,40

6,414

34,60

6,348

44,90

6,282

52,59

1,653

18,60

1,637

24,00

1,620

32,00

1,603

41,20

1,586

52,00

1,570

63,50

0,827

20,40

0,818

25,90

0,810

35,30

0,802

44,40

0,793

54,40

0,785

69,01

0

23,24

0

29,07

0

38,78

0

50,10

0

59,90

0

78,36

3. Бутанол

278К

288К

298К

308К

318К

328К

С·104

λ

С·104

λ

С·104

λ

С·104

λ

С·104

λ

С·104

λ

897,1

4,85

889

5,72

880,9

6,54

872,8

7,10

864,7

7,72

856,6

7,96

448,6

5,46

444,5

6,62

440,5

7,54

436,8

8,37

432,3

8,94

428,3

9,05

224,3

5,86

222,3

7,34

220,2

8,63

218,2

9,77

216,2

10,50

214,2

10,70

112,1

6,43

111,1

8,15

110,1

9,95

109,1

11,40

108,1

12,40

107,1

12,80

56,07

7,71

55,56

9,88

55,06

12,00

54,55

14,00

54,04

15,40

53,54

15,90

28,04

8,92

27,78

11,80

27,53

14,50

27,28

17,50

27,02

19,60

26,77

20,70

14,02

10,50

13,89

13,70

13,76

17,10

13,64

20,70

13,51

23,70

13,38

25,60

7,009

12,40

6,945

15,59

6,880

20,49

6,819

25,30

6,755

29,40

6,690

32,41

3,504

12,60

3,473

17,30

3,440

23,00

3,409

28,90

3,378

34,70

3,350

39,01

1,752

12,90

1,736

18,30

1,720

24,60

1,704

32,20

1,689

40,90

1,673

46,50

0,876

13,30

0,868

18,59

0,860

25,60

0,852

34,40

0,844

43,90

0,837

52,90

0,438

13,70

0,434

18,80

0,430

26,09

0,426

36,20

0,422

46,90

0,418

56,41

0,219

14,00

0,217

19,50

0,215

27,40

0,213

38,50

0,211

51,09

0,209

64,50

0

15,08

0

19,58

0

27,95

0

41,69

0

57,34

0

75,86

4. Пентанол

278К

288К

298К

308К

318К

328К

С·104

λ

С·104

λ

С·104

λ

С·104

λ

С·104

λ

С·104

λ

1330

2,50

1318

2,90

1306

3,36

1294

3,70

1282

3,83

1270

3,65

664,9

2,51

659,0

2,93

653,0

3,25

646,9

3,44

640,8

3,47

634,9

3,28

332,4

2,88

329,5

3,35

326,5

3,68

323,4

3,86

320,5

3,85

317,5

3,60

166,2

3,24

164,7

3,80

163,3

4,27

161,7

4,51

160,2

4,56

158,7

4,28

83,10

3,89

82,37

4,60

81,62

5,25

80,85

5,65

80,10

5,71

79,36

5,23

41,55

4,48

41,18

5,44

40,81

6,13

40,43

6,59

40,05

6,70

39,68

6,41

20,77

5,44

20,59

6,70

20,40

7,74

20,21

8,58

20,02

9,01

19,84

8,68

10,39

6,63

10,29

8,37

10,20

9,91

10,10

11,00

10,01

11,60

9,918

11,20

5,193

8,11

5,147

10,60

5,100

12,80

5,052

14,40

5,005

15,40

4,959

15,20

2,596

8,74

2,573

11,60

2,550

14,60

2,526

16,90

2,502

19,30

2,479

19,60

1,293

9,50

1,282

12,80

1,270

16,60

1,258

19,80

1,246

22,00

1,235

22,90

0,649

10,30

0,644

14,40

0,638

18,60

0,632

22,91

0,626

26,61

0,620

28,80

0

11,89

0

17,21

0

23,27

0

29,73

0

35,39

0

39,83

Погрешность определения константы ячейки не превышала 0,25%, суммарная погрешность определения эквивалентной электрической проводимости не превышала 1,4%.

Расчет эквивалентной электропроводности производился по уравнению плазменно-гидродинамической теории электролитов [10]:

 (1)

где F - постоянная Фарадея, z - эффективный заряд, e - элементарный заряд, ε - диэлектрическая постоянная среды, R - универсальная газовая постоянная, Т - температура в К, ħ - постоянная Планка, С - эквивалентная концентрация электролита, моль/л, NA - постоянная Авогадро,
kБ - постоянная Больцмана, U - энергия водородной связи растворителя, μ0 - приведенная масса несольватированных ионов, μs - приведенная масса сольватированных ионов (катиона и аниона), α - степень диссоциации электролита, rD - дебаевский радиус экранирования равный [10]:

                    (2)

rs - приведенный радиус сольватированных ионов [11,12]

 (3)

 

где ns - число сольватации равное [13-16]:

                                          (4)

В качестве степени диссоциации электролита нами было выбрано выражение:

                   (5)

Основные трудности при расчете электропроводности возникли в связи с двумя факторами:

1. Ион водорода, в отличие от ионов металлов, в протогенных растворителях даже теоретически не может быть представлен в индивидуальном состоянии из-за его малого размера, поэтому не представляется возможным рассчитывать значение μ0 (приведенной массы несольватированных ионов электролита) исходя из массы протона, равной единице. Необходимо делать определенные допущения о массе и радиусе иона водорода на основании знания его сольватации в соответствующих системах.

2. Энергия межмолекулярного взаимодействия молекул растворителя неизвестна для подавляющего большинства растворителей. Для спиртов она складывается из энергий специфического (водородной связи) и неспецифического (гидрофобного) взаимодействия.

Разберем эти проблемы отдельно.

Сольватация протона в спиртах. Проблеме сольватации иона водорода в спиртах посвящено большое количество публикаций. Наиболее интересные результаты были получены в [17,18], где спиртовые растворы неорганических кислот исследовались методом ИК-Фурье-спектроскопии. Исследуя непрерывное поглощение симметричной водородной связи в области 2000 см-1, авторы получили, что в широком диапазоне концентраций (до 4-6 моль/л) сольватное число иона водорода в спиртах от метанола до бутанола находится в пределах 2÷2,5. Здесь необходимо учесть, что ИК-спектроскопия чувствительна только к ближнему окружению иона, т.е. может дать информацию лишь о составе первой сольватной оболочки.

Таким образом, можно предположить в рамках плазмоподобной теории электролитов, что минимально сольватированному состоянию протона соответствует состояние с ns = 2. Как будет видно в дальнейшем, в низших спиртах такое предположение вполне оправдано.

Ключевым параметром для расчета электропроводности является значение радиуса «несольватированного» протона. Расчеты с использованием кристаллографического радиуса атома водорода 0,98 приводят к неправдоподобным результатам. В данной публикации для расчетов использовался радиус протона равный:

rs (H+) = 0.26Å + 2Rs

где Rs - радиус молекулы растворителя, r (H+) = 0.26Å [19]. Это приближенно соответствует строению симметричной водородной связи между протоном и двумя молекулами растворителя.

Энергия межмолекулярного взаимодействия (U) . Ранее значения U при 298К и радиусы молекул воды и н-спиртов были вычислены методом множественной регрессии [20]. В данной публикации эти цифры были приняты за основу, а значения энергии при других температурах могут быть найдены из знания предельных электропроводностей следующим образом.

Таблица 2.

Параметры сольватации HCl в н-спиртах

T, K

ns(H+)

ns(Cl-)

Ms(H+)

Ms(Cl-)

μs(HCl)

rs(H+),

1010м

rs(Cl-),

1010м

rs(HCl),

1010м

U (6),

кДж/моль

 

EtOH

278

1,388

5,978

64,84

310,49

53,64

1,61

2,63

1,00

34,36

288

1,410

6,000

65,84

311,49

54,35

1,59

2,57

0,98

31,18

298

1,459

6,049

68,10

313,75

55,96

1,57

2,52

0,97

27,96

308

1,447

6,038

67,58

313,23

55,59

1,53

2,46

0,94

26,75

318

1,463

6,054

68,31

313,96

56,11

1,50

2,41

0,93

25,08

328

1,477

6,067

68,92

314,57

56,54

1,48

2,36

0,91

23,41

PrOH

278

1,644

8,115

99,66

522,41

83,69

1,49

2,54

0,94

46,73

288

1,707

8,178

103,41

526,17

86,43

1,48

2,49

0,93

43,35

298

1,773

8,243

107,35

530,11

89,27

1,46

2,44

0,91

38,96

308

1,840

8,311

111,40

534,16

92,18

1,45

2,39

0,90

35,57

318

1,909

8,380

115,56

538,32

95,14

1,44

2,35

0,89

33,82

328

1,980

8,451

119,81

542,57

98,14

1,42

2,31

0,88

30,81

BuOH

278

1,935

9,502

144,22

738,65

120,66

1,44

2,44

0,90

56,97

288

1,938

9,504

144,38

738,81

120,78

1,40

2,38

0,88

51,37

298

2,065

9,631

153,79

748,22

127,57

1,40

2,34

1,65

45,90

308

2,131

9,698

158,71

753,15

131,09

1,39

2,30

0,86

38,50

318

2,197

9,764

163,57

758,01

134,54

1,37

2,25

0,85

34,15

328

2,262

9,829

168,38

762,81

137,93

1,35

2,21

0,84

30,93

AmOH

278

2,286

11,070

202,15

1009,67

168,43

1,40

2,37

0,88

64,62

288

2,347

11,132

207,57

1015,09

172,33

1,38

2,32

0,87

55,92

298

2,412

11,196

213,26

1020,79

176,41

1,36

2,27

0,85

50,12

308

2,477

11,262

219,01

1026,53

180,50

1,35

2,23

0,84

46,19

318

2,546

11,330

225,04

1032,56

184,77

1,33

2,19

0,83

44,18

328

2,653

11,437

234,47

1041,99

191,40

1,35

2,19

0,83

43,01

Если в (1) подставить значение C = 0, то получим выражение для расчета энергии межмолекулярного взаимодействия.

 (6)

Таким образом, становится возможным расчет энергии межмолекулярного взаимодействия при любой температуре (табл. 2).

Расчет эквивалентной электропроводности. На основании найденных параметров сольватации хлороводорода были рассчитаны значения его эквивалентной электропроводности в соответствии с уравнением (1). В качестве критерия соответствия теории эксперименту было выбрано соотношение λэксптеор, где теоретические значения - это значения, полученные по уравнению (1), а экспериментальные - это данные полученные нами. На рис. 1 представлены графики зависимости соотношения λэксптеор во всем диапазоне концентраций для четырех исследованных спиртов в изучаемом диапазоне температур.

Рис. 1. Концентрационная зависимость соотношения λэксптеор в различных спиртах при различных температурах

Как видно из графика, лишь для этилового спирта соотношение расчетных и литературных значений превышает единицу. Это объясняется тем фактом, что для этанола при 298К было взято литературное значение энергии межмолекулярного взаимодействия (27,96 КДж/моль), а для всех остальных спиртов значение энергии было получено по ур. (3) из знания предельной электропроводности HCl в этих спиртах. Очевидно, что в таком случае соотношение λэксптеор при бесконечном разбавлении
(C = 0) будет в точности равно единице (см. ур. 3).

Рис. 2. Концентрационная зависимость соотношения λэксптеор в этаноле и бутаноле при высоких концентрациях хлороводорода (Т=298К)

Также для полноты картины были проведены расчеты эквивалентной электропроводности в области высоких концентраций кислоты. В качестве литературных были выбраны данные из [21]. На рис. 2 показаны графики концентрационной зависимости λэксптеор при 298К для этанола и бутанола.

Анализируя рис. 1 и 2 можно сказать, что расхождение между экспериментальными и расчетными величинами даже при высоких концентрациях составляет порядка нескольких процентов во всех спиртах. Это говорит о том, что в рамках сделанных предположений плазмоподобная теория электролитов хорошо описывает электропроводность хлороводорода в данных четырех н-спиртах.

СПИСОК ЛИТЕРАТУРЫ

  1. Балданов М.М., Танганов Б.Б., Мохосоев М.В. Плазмоподобное состояние растворов электролитов и диссипативные процессы // Доклады АН СССР. - 1989. - Т. 308. - №2. - С. 397-400.
  2. Балданов М.М., Танганов Б.Б., Мохосоев М.В. Электропроводность растворов и кинетическое уравнение Больцмана // Журнал физической химии. - 1990. - Т.64. - №1. - С. 88-94; Russian J.Phys.Chem. -1990.-V.64(1).-P.46-49.
  3. Балданов М.М., Балданова Д.М. Жигжитова С.Б., Танганов Б.Б. Плазменно-гидродинамическая теория растворов электролитов и электропроводность // Доклады АН ВШ России.-2006.- № 1. -С.25-32.
  4. Вайсбергер А., Проскауэр Э., Риддик Дж., Тупс Э. Органические растворители /Пер. с англ. М.: Издатинлит.- 1958.- 519 с.
  5. Гордон А., Форд Р. Спутник химика. - М.: Мир.-1976.- 541 с.
  6. Крешков А.П. Аналитическая химия неводных растворов. -М.:Химия.- 1982.-120 с.
  7. Танганов Б.Б. Биамперометрическое определение содержания воды в неводных растворителях - модифицированный метод К.Фишера// Сб. "Химия и хим. технология", с.46-50 (Рукоп.депонир.в ОНИИТЭХИМ,Черкассы,1984, №976хп-Д84)
  8. Пацация Б.К. Подвижность и ассоциация однозарядных ионов в апротонных растворителях при 233 - 318 К. Дисс....канд. хим. наук: Иваново. 1991. 180с.
  9. Кинчин А.Н., Колкер А.М., Крестов Г.А. Калориметрическая установка с безжидкостной термостатирующей оболочкой для измерения теплот растворения веществ при низких температурах. // Ж. физ. химии. 1986. Т.60. С.782-783.
  10. Балданов М.М., Балданова Д.М. Жигжитова С.Б., Танганов Б.Б. Плазменно-гидродинамическая теория растворов электролитов и электропроводность // Доклады АН ВШ России.-2006.- № 1. -С.25-32
  11. Балданов М.М., Танганов Б.Б., Иванов С.В. Дисперсионное уравнение Власова и радиусы сольватированных ионов в метаноле// Журнал общей химии.- 1994.-Т.64.- №1.- С.32-34.
  12. Балданов М.М., Балданова Д.М., Жигжитова С.Б., Танганов Б.Б. К проблеме радиусов гидратированных ионов // Доклады АН ВШ России.-2006.-Вып.2.-С.32-37.
  13. Балданов М.М., Танганов Б.Б., Мохосоев М.В. Неэмпирический расчет сольватных чисел ионов в растворах // ДАН СССР. - 1989.- Т.308.- №1.- С.106-110.
  14. Балданов М.М., Танганов Б.Б. К проблеме сольватных чисел и масс сольватированных ионов в спиртовых растворах // Журнал физической химии. - 1992. - Т.66. - №4. - С.1084-1088; Russian J.Phys.Chem. - 1992. - V.66(4)/-P.572-574.
  15. Балданов М.М., Танганов Б.Б., Мохосоев М.В. Неэмпирический расчет сольватных чисел ионов в растворах // Межвузовский сб. "Проявление природы растворителя в термодинам.свойствах растворов".- Иваново.- 1989.-С.66-70.
  16. Балданов М.М., Танганов Б.Б. Расчет сольватных чисел ионов в неводных средах // Журнал общей химии. - 1992. - Т.63. - №8. -С.1710-1712.
  17. Russian Chemical Bulletin, Vol. 47, No. 12, December. I998
  18. A. A. Pankov, V. Yu. Borovkov, and V. B. Kazartskii. Dokl Akad. Nauk SSSR, 1981, 258, 902 [Dokl Chem., 1981, 258 (Engl. Transl.)].
  19. Э.Я. Мэлвин-Хьюз. Физическая химия (книга II).-М.: Издатинлит, 1962.-С.756.
  20. Танганов Б.Б. Взаимодействия в растворах электролитов: моделирование сольватационных процессов, равновесий в растворах полиэлектролитов и математическое прогнозирование свойств химических систем (монография). // М.: Изд. «Академия естествознания», 2009. - 141 с.
  21. Новый справочник химика и технолога. Химическое равновесие. Свойства растворов. // СПб.: Изд. НПО "Профессионал", 2004. - 907, 913 с.



Отзывы (через Facebook):

Оставить отзыв с помощью аккаунта FaceBook:

ЭКОНОМИЧЕСКОЕ СОДЕРЖАНИЕ ЗЕМЕЛЬНОГО НАЛОГА

Статья в формате PDF 135 KB...

24 02 2021 2:27:58

ТЕТРАДНЫЙ ЭФФЕКТ ФРАКЦИОНИРОВАНИЯ РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ И ЕГО ИСПОЛЬЗОВАНИЕ В РЕШЕНИИ ПРОБЛЕМ ПЕТРОЛОГИИ ГРАНИТОИДОВ

Рассмотрены химические и термодинамические особенности возникновения тетрадного эффекта фракционирования редкоземельных элементов в высоко эволюционированных гранитоидах на многих примерах его проявления в отечественной и зарубежной практики. Выявление тетрадного эффекта позволяет боле глубоко понять особенности петрологии развития магматических очагов многих интрузивных комплексов и потенциальные перспективы гранитоидов на редкометалльное и редкоземельное оруденение. Составлена математическая программа расчёта тетрадного эффекта фракционирования редкоземельных элементов, прилагаемая в электронном варианте к статье. ...

23 02 2021 4:52:48

ПЛАТИНА И ПЛАТИОИДЫ В ОФИОЛИТАХ САЛАИРА, АЛТАЯ И ГОРНОЙ ШОРИИ

Приведены данные по распространению элементов платиновой группы ( Э П Г) в офиолитах Салаира, Алтая и Горной Шории. Э П Г в наибольших концентрациях отмечены в проявлениях хромитов, образующих подиформные залежи, а также в никелевых проявлениях с обильными сульфидами меди, никеля и кобальта. Минералы Э П Г представлены изоферроплатиной, иридосмином и рутениридосмином. Реже встречаются самородная платина, рутениевый невъянскит и рутениевый сысерскит. В рудных телах также присутствуют в повышенных концентрациях золото и серебро. Состав минеральных фаз платиноидов указывает на близость к восточно-уральскому геолого-промышленному типу, связанному с изверженными породами габбро-клинопироксенит-перидотитовой формации. ...

20 02 2021 10:44:18

В ГОД КРОЛИКА – О КРОЛИКЕ!

Статья в формате PDF 244 KB...

14 02 2021 17:30:53

КОНТАКТНАЯ АКТИВАЦИЯ ВЕНОЗНОЙ КРОВИ

Статья в формате PDF 119 KB...

12 02 2021 17:38:10

СОВРЕМЕННЫЕ ТЕНДЕНЦИИ В БАНКОВСКОМ ДЕЛЕ

Статья в формате PDF 256 KB...

10 02 2021 3:58:43

МЕХАНИЗМЫ РЕАЛИЗАЦИИ РАЗЛИЧНЫХ МЕТОДИК САМОУПРАВЛЕНИЯ С БИОЛОГИЧЕСКОЙ ОБРАТНОЙ СВЯЗЬЮ

Проводился анализ изменений биоэлектрической активности головного мозга и сверхмедленной активности в нервной, дыхательной и сердечно-сосудистой системах в процессе адаптивного биоуправления с биологической обратной связью по параметрам церебральной гемодинамики и медитации. Осуществлялась регистрация сверхмедленной активности нервной и сердечно-сосудистой систем и локализация биоэлектрической активности нервной системы. Выявлено вовлечение различных мозговых структур в реализацию поведенческих стратегий в группах обучившихся различным видам самоуправления, что говорит о различии механизмов достижения конечного результата. Полученные результаты свидетельствуют о вовлечении кардиореспираторной синхронизации в изменение биоэлектрической активности только при релаксации с помощью адаптивного биоуправления. Осуществлена проверка резонансной гипотезы релаксации, согласно которой при совпадении частот изменения дыхания, биоэлектрической активности мозга, сердечного ритма и сосудистого тонуса происходит усиление активности в вовлекаемых в резонансный ответ структурах. ...

09 02 2021 3:39:32

КЛИНИКО-ФУНКЦИОНАЛЬНАЯ ХАРАКТЕРИСТИКА МАЛЫХ АНОМАЛИЙ СЕРДЦА У ДЕТЕЙ С АРИТМИЯМИ

На основании результатов комплексного клинико- инструментального обследования 390 детей в возрасте от 5 до 15 лет, проживающих в г. Красноярске, была изучена зависимость клинического течения нарушений сердечного ритма и проводимости от выраженности и формы малых аномалий развития сердца. Установлены основные эхокардиографические параметры и прогностические критерии развития гемодинамических нарушений у детей с аритмиями. ...

08 02 2021 12:51:56

ОБ ОСОБЕННОСТЯХ СОВРЕМЕННОЙ РУССКОЙ ФИЛОСОФИИ

Статья в формате PDF 110 KB...

04 02 2021 3:27:45

ФОРМИРОВАНИЕ СИСТЕМЫ МЕНЕДЖМЕНТА КАЧЕСТВА В ВУЗЕ

Статья в формате PDF 146 KB...

03 02 2021 9:44:20

ТЕОРИЯ ДОУ

Статья в формате PDF 424 KB...

02 02 2021 4:33:20

СОСТОЯНИЕ НЕКОТОРЫХ ПОКАЗАТЕЛЕЙ ОКИСЛИТЕЛЬНОВОССТАНОВИТЕЛЬНЫХ ПРОЦЕССОВ У БОЛЬНЫХ ОСТРЫМ ХОЛЕЦИСТИТОМ И ИХ КОРРЕКЦИЯ

Под наблюдением автора было 262 больных острым холециститом. Обсуждаются вопросы адаптации больных к условиям операционного и послеоперационного периодов, которая зависит от окислительно-восстановительных процессов, обусловленных функционированием ферментативных систем, гипоксии тканей, снижения приспособительных реакций, особенно выраженных у лиц старше 50 лет. В контрольной группе (178) больных уже при поступлении в клинику намечалась тенденция к снижению Р О2 в подкожно-жировой основе, а в момент операции оно было выраженным и устойчивым, которое держалось в течение 6 дней. Так же на всем протяжении послеоперационного периода у больных наблюдалось уменьшение кислородной емкости крови, концентрации SH-групп в плазме крови, только к моменту выписки эти показатели приближались к норме. Концентрация молочной и пировиноградной кислот крови тоже было повышенным. В исследуемой группе (84) больных, которые получали в комплексном лечении во время операции и послеоперационном периоде ганглиоблокаторы и гепарин, напряжение кислорода во время операции повышалось на 68%, повышение сохранялось 2-3 дня, а к концу 5 дня р О2 было в пределах нормы. Намечалась тенденция увеличения кислородной емкости крови и SH-групп в плазме. Не смотря на то, что при поступлении лактат и пируват были выше контроля, уже в первый день после операции эти показатели были ниже контрольных. Автор делает вывод о том, что применение в комплексном лечении ганглиоблокаторов и гепарина, позволяло улучшать кислородный баланс крови и ткани и, улучшать окислительновосстановительные процессы, адаптацию организма больного к стрессовым условиям, что способствовало снижению процента послеоперационных осложнений и летальности. ...

30 01 2021 6:20:47

ПРОБЛЕМЫ БЕЗОПАСНОСТИ ТРУБОПРОВОДНОГО ТРАНСПОРТА

Статья в формате PDF 115 KB...

28 01 2021 17:23:19

СИСТЕМНЫЙ КРИЗИС В СТРОИТЕЛЬСТВЕ

Статья в формате PDF 343 KB...

20 01 2021 22:49:42

НЕКОТОРЫЕ АСПЕКТЫ НАРКОПРЕСТУПНОСТИ

Статья в формате PDF 251 KB...

18 01 2021 20:18:21

К ТЕОРИИ ВИНТОВОГО ПРЕОБРАЗОВАТЕЛЯ СИЛ

Статья в формате PDF 376 KB...

10 01 2021 15:31:18

СТОЛЯРОВ СТАНИСЛАВ ПЕТРОВИЧ

Статья в формате PDF 225 KB...

06 01 2021 5:51:12

ИНТЕГРАЦИЯ ФАРМАКОЛОГИЧЕСКИХ ЭФФЕКТОВ ИЗОНИАЗИДА В ХИМИОТЕРАПИИ ТУБЕРКУЛЕЗА ЛЕГКИХ

Предложен метод межреберного внутримышечного введения препаратов с непосредственным ультразвуковым «метод глубокого фонофореза», или лазерным воздействием «метод глубокого фотофореза» на место инъекции по рентгенологической проекции воспалительной зоны, и изучены механизмы их лечебного действия у больных деструктивным туберкулезом легких с выраженным пневмофиброзом и патологией органов пищеварения. Создание в очаге туберкулезного поражения повышенной концентрации изониазида повышает эффективность химиотерапии туберкулеза легких в условиях выраженного пневмофиброза изученными методами на 18%. ...

01 01 2021 15:21:48

ВОЗНИКНОВЕНИЕ КОНЦЕПЦИИ РАЗВИТИЯ СИСТЕМЫ МЕНЕДЖМЕНТА КАЧЕСТВА ПРЕДПРИЯТИЙ ЖИЗНЕОБЕСПЕЧЕНИЯ

В статье рассмотрен кластерный подход к структурированию экономики и обоснованию стратегий региональной экономической политики повышения качества кластера процессов жизнеобеспечения. ...

26 12 2020 23:26:27

УСТАНОВЛЕНИЕ ОПТИМАЛЬНОГО ПЕРИОДА ПРОГНОЗИРОВАНИЯ

Статья в формате PDF 264 KB...

22 12 2020 8:44:58

ОПРЕДЕЛЕНИЕ МОМЕНТА ТРЕНИЯ В ПОДШИПНИКАХ КАЧЕНИЯ

Статья в формате PDF 294 KB...

17 12 2020 8:34:49

ПРИМЕНЕНИЕ МЕТОДОВ АППРОКСИМАЦИИ ДАННЫХ

Статья в формате PDF 253 KB...

01 12 2020 2:18:30

СТАТИСТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ФУНКЦИОНАЛЬНОГО СОСТОЯНИЯ ПРИ ХРОНИЧЕСКОЙ СЕРДЕЧНОЙ НЕДОСТАТОЧНОСТИ У БОЛЬНЫХ ИШЕМИЧЕСКОЙ БОЛЕЗНЬЮ СЕРДЦА

В статье описываются математические модели в виде уравнения регрессии, которое позволяет по клиническим признакам хронической сердечной недостаточности со статистической достоверностью предсказать результаты 6-минутного теста. ...

30 11 2020 8:35:50

ОЦЕНКА ГИДРОХИМИЧЕСКОГО СОСТОЯНИЯ ВОДНЫХ РЕСУРСОВ УГЛЕДОБЫВАЮЩЕГО КОМПЛЕКСА ЮЖНОЙ ЯКУТИИ

Проведена работа по полевому и лабораторному изучению современного гидрохимического состояния воды и донных отложений рек зоны воздействия угледобывающего промышленного комплекса Южной Якутии. На основе анализа результатов исследований дана оценка качества данных водотоков. Установлено загрязнение нормируемого содержания некоторых компонентов воды естественного и техногенного характера. ...

28 11 2020 10:51:30

АРХЕТИПИЧЕСКИЕ ОСНОВАНИЯ БЫТИЯ НООСФЕРЫ

Статья в формате PDF 110 KB...

23 11 2020 13:10:23

ПЕДАГОГИЧЕСКОЕ СОПРОВОЖДЕНИЕ ОДАРЁННЫХ ДЕТЕЙ

В настояще время весьма актуальной является задача поиска, отбора, поддержки и развития интеллектуально одарённых детей. « Трёхкольцевая модель одарённости» Рензулли включает следующие компоненты: высокий уровень интеллекта, креативность и усиленную мотивацию. Такие дети требуют дифференцированных учебных программ и особой педагогической поддержки. В современной практике обучения используются педагогические стратегии и программы, которые предусматривают высокий уровень развития мыслительных процессов, совершенствование творческих способностей и быстрое усвоение знаний, умений и навыков. Процесс обучения одарённых детей требует создания особой образовательной среды. Ключевой фигурой в создании такой среды является учитель. Функция педагога состоит в сопровождении и поддержке, развитии личности ученика. Продуктивность взаимодействий обеспечивается включённостью ученика и учителя в общую целенаправленную деятельность. ...

21 11 2020 8:19:46

ЭКОЛОГИЧЕСКИЕ ПЛАТЕЖИ В ОАО «АЛМАЗЫ АНАБАРА»

Статья в формате PDF 244 KB...

20 11 2020 6:31:39

Молекулы средней массы плазмы крови при сифилисе

Статья в формате PDF 106 KB...

19 11 2020 9:34:17

АКТУАЛЬНОСТЬ ЭКОЛОГИЧЕСКОГО ОБРАЗОВАНИЯ

Статья в формате PDF 129 KB...

09 11 2020 8:34:50

ИСПОЛЬЗОВАНИЕ БИОЛОГИЧЕСКИХ ТЕСТОВ И ЗАДАЧ ДЛЯ ВЫЯВЛЕНИЯ УЧАЩИХСЯ С ПОВЫШЕННЫМ УРОВНЕМ ИНТЕЛЛЕКТА

В работе приводятся сведения относительно возможности применения тестовых заданий и биологических задач для исследования личностных особенностей учащихся и выявления одаренных детей. Показано, что использование этого подхода может способствовать повышению эффективности выявления школьников с повышенным уровнем интеллекта. ...

04 11 2020 7:28:13

ЗДОРОВЬЕ ДЕТЕЙ ЛИЦ, ПЕРЕБОЛЕВШИХ ХЛОРАКНЕ

Статья в формате PDF 109 KB...

28 10 2020 4:36:47

ОПЫТНО-ЭКСПЕРИМЕНТАЛЬНАЯ ДЕЯТЕЛЬНОСТЬ В РАЗВИТИИ ЕСТЕСТВЕННОНАУЧНЫХ ПОНЯТИЙ СТАРШИХ ДОШКОЛЬНИКОВ И МЛАДШИХ ШКОЛЬНИКОВ

Организация полноценного процесса познания предполагает реализацию развивающего образования и самообразования, непрерывность данного процесса на всех его ступенях. Понятие интегрирует в себе процесс и итог познания сущности предметов, явлений, включает рефлексивные процессы мышления, обеспечивая их необратимость, свернутость, системность. Эмоциональное отношение ребенка к изучаемому материалу создает в мышлении своеобразную доминанту, поддерживающую любознательность и интерес. Основная особенность опытно-экспериментальной деятельности состоит в наличии возможности управлять ходом изучения явления, здесь ребенок проявляет собственную активность и творчество в процессе получения новых знаний. Опытно-экспериментальную деятельность по развитию естественнонаучных понятий необходимо строить в соответствии с четырьмя этапами диалектического познания: основание - ядро - следствие – общие критические истолкования, а также с учетом обобщенного плана проведения опыта: цель - схема - ход - результат. Методика организации опытно-экспериментальной деятельности по развитию естественнонаучных понятий дошкольников и младших школьников раскрыта нами на примере понятия «свет». Развитие естественнонаучных понятий дошкольников и младших школьников эффективно в условиях личностно-ориентированного образования, обращенного к чувствам, индивидуально неповторимому миру человека. ...

27 10 2020 10:42:57

ДИАГНОСТИКА ЖЕЛЕЗОДЕФИЦИТНОЙ АНЕМИИ У ДЕТЕЙ

Статья в формате PDF 302 KB...

25 10 2020 6:53:24

ФОРМИРОВАНИЕ МОТИВАЦИЙ В ПРОЦЕССЕ ОБУЧЕНИЯ К ЗДОРОВОМУ ОБРАЗУ ЖИЗНИ

В работе сформулированы принципы валеологического мировоззрения как образца устремлений, выполняющих ориентационную, нормирующую, прогностическую функции в отношении здоровья и здорового образа жизни. ...

19 10 2020 17:17:14

АГАФОНОВ АЛЕКСАНДР ТИМОФЕЕВИЧ

Статья в формате PDF 151 KB...

10 10 2020 10:24:43

ПОВЫШЕНИЕ КПД РЕМЕННЫХ ПЕРЕДАЧ

Статья в формате PDF 261 KB...

09 10 2020 9:34:25

БИОХИМИЯ КРОВИ (учебное пособие)

Статья в формате PDF 106 KB...

08 10 2020 20:54:53

ШЕРСТНЕВ ВЛАДИМИР ПЕТРОВИЧ

Статья в формате PDF 125 KB...

01 10 2020 8:39:30

ЭЛЕКТРОЭНЕРГЕТИКА

Статья в формате PDF 98 KB...

30 09 2020 17:51:45

ПРЕДЕЛЬНЫЕ ЦИКЛЫ В СЛОЖНЫХ ЭКОЛОГИЧЕСКИХ СИСТЕМАХ «ХИЩНИКЖЕРТВА»

В настоящей работе рассматриваются сложные иерархические системы «хищник -жертва - продуцент». В основу исследования таких систем положены достаточно хорошо известные экспериментальные данные, собранные компанией « Гудзонов залив» за более чем столетний период. На нижнем уровне сложной иерархической системы исследуется влияние солнечного потока на скорость роста продуцентов (деревьев, кустарников и т.д.). Показана возможность стохастических колебаний в многоуровневой системе. Подтверждена ранее высказанная гипотеза о возможности колебаний в системе «жертва -продуцент». Математическая модель описывает широкий спектр процессов и явлений, которые характерны для сложных экологических систем. ...

29 09 2020 0:47:14

Еще:
Обзоры -1 :: Обзоры -2 :: Обзоры -3 :: Обзоры -4 :: Обзоры -5 :: Обзоры -6 :: Обзоры -7 :: Обзоры -8 :: Обзоры -9 :: Обзоры -10 :: Обзоры -11 ::

Последовательность подготовки научной работы может быть такой:

Выбор темы. Это важный этап. Во-первых, тема должна быть интересна не только вам, но и большинству слушателей, которым вы будете её докладывать, чтобы вы видели заинтересованность в их глазах, а не откровенную скуку.

Выбор целей и задач своей научной работы. То есть, нужно сузить тему. Например, тема: «Грудное вскармливание», сужение темы: «Грудное вскармливание среди студенток нашего ВУЗа». И если общая тема мало кому интересна, то суженная до рамок собственного института или университета, она становится интересной практически для всех слушателей. Целью может стать: «Содействие оптимальным условиям вскармливания грудью детей студентов нашего ВУЗа», а задачей — доказать, что специальные условия, созданные для кормящих студенток, не помешают их успеваемости, но уменьшат количество пропусков, академических отпусков и способствуют выращиванию здоровых детей — нашего будущего. Понятно, что эта тема подходит для студентов медицинских и педагогических ВУЗов, но и в других учебных учреждениях можно найти темы, интересные всем.

Разработать методы исследования и сбора информации. В случае с естественным вскармливанием, скорее всего, это будет анкетирование студенток, имеющих детей.

Систематизировать материал и подготовить презентацию.

Подготовиться к выступлению.

Выступить и получить: награду, удовольствие и опыт, чтобы в следующем году выступить ещё лучше и сорвать шквал аплодисментов, стать узнаваемым, а значит — более конкурентоспособным!