О МОДУЛЯРНЫХ РЕШЕТКАХ В ИЕРАРХИИ СТРАТ > Научные обзоры
IT-Reviews    

О МОДУЛЯРНЫХ РЕШЕТКАХ В ИЕРАРХИИ СТРАТ

Источник:
Суровцева Н.Н. Клейменов В.Ф. Статья в формате PDF 139 KB

Старость и старение населения вышли в последние годы на уровень глобальных проблем человечества. Проблемность этих процессов связана с массой нерешенных социальных, экономических, культурных и медицинских задач по обеспечению и созданию оптимальных условий жизнедеятельности людей пожилого возраста.

Проблема старения общества представляет собой новый социальный феномен, с которым человечество столкнулось лишь во второй половине XX века. Сегодня российское общество вплотную подошло к такому периоду своего развития, когда увеличение доли пожилых людей в составе населения серьезно влияет на экономические, политические, социальные, духовно-нравственные изменения. Реализация идей построения "общества для людей всех возрастов" ставит в качестве важнейшей в российском обществе задачу формирования в общественном сознании положительного образа старости, уважения к пожилым людям, использование их потенциала в экономике.

Категория пожилых людей имеет сложную структуру, разбивается на большое количество страт, как пересекающихся между собой, так и не имеющих пересечения. При этом многим стратам присущи одинаковые функции, возможно, с различными значениями [1, 2]. Так как страты с течением времени могут изменяться, появляются новые или исчезают уже имеющиеся, то исходную решетку полезно представлять себе потенциально бесконечной, а само множество страт в виде иерархической системы. Дадим необходимые определения.

Упорядоченным множеством L называется множество, на котором определено бинарное отношение x≤y, удовлетворяющее для любых элементов x, y, z из L следующим условиям: 1. x≤x (рефлексивность), 2. если x≤y и y≤x, то x=y (антисимметричность), 3. если x≤y и y≤z, то x≤z (транзитивность). Далее, элемент, a упорядоченного множества L называется точной верхней (нижней) гранью элементов x и y этого множества, если x≤a, y≤a (a≤x, a≤y) и для любого b, такого, что x≤b, y≤b (b≤x, b≤y) имеет место, a≤b (b≤a). Точная верхняя грань элементов x, y обозначается x y, а точная нижняя x y. Упорядоченное множество L, в котором для любых элементов этого множества определена точная верхняя и точная нижняя грань называется решеткой.

Определение 1. Подмножество I решетки L называется иерархией, если для любых двух элементов множества I определена их точная верхняя грань.

Следующие два эквивалентных условия для элементов x, y, z решетки L называются дистрибутивностью:

  1. x (y z) = (x y) (x z)
  2. x (y z)=(x y) (x z), а условие
  3. если x≤z, то x (y z)= (x y) z - модулярностью.

Если условия 1, 2 выполняются для любых элементов x, y, z решетки L, то эта решетка называется дистрибутивной, а если для любых элементов x, y, z выполняется условия 3., то решетка называется модулярной [3]. Любая дистрибутивная решетка модулярна, но обратное не верно. В иерархии существуют страты x, y, z, для которых не выполняется условия 1, 2 и 3.

Утверждение 1. Существует немодулярная решетка, содержащаяся в иерархии страт.

Доказательство. Обозначим через S0 - страту пожилых людей, являющихся либо УВОВ, либо инвалидами 1 группы, S1 - страту пожилых людей являющихся УВОВ, S2 - страту пожилых людей инвалиды 1 группы, S3 - страту пожилых людей ИВОВ, S4 - страту пожилых инвалидов 1 группы УВОВ. Тогда выполняются следующие равенства: S0 =S1 S2, S3 ≤ S1, S4 =S2 S3.

Докажем, что для элементов S1, S2, S3 не выполняется тождество модулярности. Действительно, S3≤S1, рассмотрим элемент S3 (S2 S1). Так как S2 S1= S4, а S3 S4=S3, то S3 (S2 S1)=S3. С другой стороны, вычислим элемент (S3 S2) S1, так как S3 S2= S0, а S0 S1= S1, то (S3 S2) S1=S1. Таким образом, S3 (S2 S1)≠(S3 S2) S1, более точно S3 (S S1)< (S3 S2) S1, что и доказывает немодулярность построенной решетки.

Замечание. Отметим, что внеся даже небольшие изменения в построении примера из утверждения 1 можно получить модулярную решетку.

Пример 1. Пусть S0 - страта пожилых людей являющихся либо инвалидами, либо людьми имеющими высшее образование, S1 - пожилые люди инвалиды, S2 - пожилые люди с высшим образованием, S3 - пожилые люди инвалиды 1 группы, S4 - пожилые инвалиды с высшим образованием, S5 - пожилые инвалиды 1 группы с высшим образованием. Тогда S0=S1 S2, S3≤S1, S4=S1 S2, S5=S2 S3. Рассмотрим элемент S3 (S2 S1), получим S3 S2= S0 и S0 S1= S1. Таким образом, S3 (S2 S1)=(S3 S2) S1 модулярность, для элементов S1, S2, S3 выполняется.

Можно отметить, что большинство подрешеток в иерархии страт все - таки удовлетворяют этому условию. Более того, в любой иерархии можно построить подрешетку удовлетворяющую условию не только модулярности но и дистрибутивности.

Утверждение 2. В любой иерархии существует последовательность страт Si1 , Si2 , ... Sin , которые образуют дистрибутивную подрешетку.

Часто является необходимым оценить, насколько две страты близки друг к другу. Для этого введем понятие расстояния между стратами. Дадим следующее определение.

Определение 2. Расстоянием d (A, B) между стратами называется число

d= ,

где |A|, |B| - мощность страт A и B, min (a, b) - минимальное из чисел a, b, а max (a, b) - максимальное из чисел a, b.

Утверждение 3. Расстояния между стратами обладают следующими свойствами:

1. d (A, B)=1<=>A∩B=Ø

2. d (A, B)=0<=>A ⊂B или B ⊂A

3. 0≤d(A, B)≤1

В доказательстве следующего критерия немодулярности иерархии также используется понятие расстояния между стратами.

Утверждение 4. В иерархии I тогда и только тогда существует немодулярная подрешетка, когда в ней найдутся такие страты A, B, C, которые удовлетворяют следующим условиям:

1. d(A,C)=0, A≠C

2. d(A,B)>0

3. B∩C=A∩B (при этом если |B|<|А| это условие эквивалентно равенству d(A, B)=
d(B, C)).

Доказательства утверждений 2, 3, 4 будут рассмотрены в следующих работах.

СПИСОК ЛИТЕРАТУРЫ

  1. Клейменов В.Ф., Суровцева Н.Н., Функции для иерархии категорий пожилых людей // Фундаментальные исследования. № 10, 2008 г., С. 75.
  2. Клейменов В.Ф., Суровцева Н.Н., Вычисление для иерархии страт // Фундаментальные исследования. № 3, 2009 г., С.58-59.
  3. Биркгоф Г. Теория решеток. - М.: Наука.1984. - 568 с.



Отзывы (через Facebook):

Оставить отзыв с помощью аккаунта FaceBook:


ЭМОТИВНЫЙ КОНЦЕПТ «ОБИДА» В&#8239;ХУДОЖЕСТВЕННОМ ПРОСТРАНСТВЕ

В статье на основе материала « Национального корпуса русского языка» дан анализ вербальному и невербальному воплощению эмотивного концепта «обида» в художественном тексте. На языковом уровне рассмотрена сочетаемость лексемы «обида» с другими словами-эмотивами. На неязыковом уровне охарактеризованы невербальные компоненты проявления данной эмоции (плач, взгляд, жесты). Представленный анализ позволяет сделать вывод о национальной специфики данного чувства. ...

02 08 2021 9:55:24

МОДЕЛИ ЭВОЛЮЦИОННОЙ ЭКОЛОГИИ ДЛЯ ЦЕЛЕЙ КАРТОГРАФИИ

Статья в формате PDF 103 KB...

27 07 2021 10:32:15

ИССЛЕДОВАНИЕ СВОЙСТВ АСПИРАЦИОННОЙ ПЫЛИ

Статья в формате PDF 255 KB...

25 07 2021 16:49:56

ЭКОЛОГИЯ ГОРОДА

Статья в формате PDF 84 KB...

16 07 2021 1:56:27

ГИС ДЛЯ ОЦЕНКИ РИСКА В СИСТЕМАХ БЕЗОПАСНОСТИ

Статья в формате PDF 99 KB...

13 07 2021 0:21:10

КОВАЛЕВ АНАТОЛИЙ СПИРИДОНОВИЧ

Статья в формате PDF 338 KB...

12 07 2021 18:45:48

НАРУШЕНИЯ ЦЕНТРАЛЬНОЙ НЕРВНОЙ СИСТЕМЫ И ОРГАНОВ ЧУВСТВ СРЕДИ ПОПУЛЯЦИИ ШИРВАНСКОЙ ЗОНЫ АЗЕРБАЙДЖАНА

Среди населения Ширванской зоны Азербайджана проведены медико-генетические исследования по выявлению нарушений Ц Н С и органов чувств, установлены типы наследования патологий. Среди 119 больных с 14 наследственными и врожденными заболеваниями 71,43 % приходится на моногенные патологии с аутосомно-рецессивным типом наследования, что объясняется кровнородственными браками среди родителей пробандов. ...

10 07 2021 15:25:39

МЕСТО ТРАДИЦИОННОЙ ПИЩИ В ОБРЯДОВОЙ КУЛЬТУРЕ МОРДВЫ

Статья в формате PDF 141 KB...

08 07 2021 2:10:56

МОДЕЛИРОВАНИЕ КВАЗИФРАКТАЛЬНЫХ КОНФИГУРАЦИЙ МЕЖФАЗНЫХ ГРАНИЦ МЕТОДОМ ИТЕРАЦИИ ПРЯМОУГОЛЬНЫХ ГЕНЕРАТОРОВ НА 2D СЕТКАХ

Обсуждены методика и некоторые результаты моделирования вероятных конфигураций межфазных границ на поверхности композиционных материалов, полученные методом итерации прямоугольных генераторов на определенных сетках Кеплера- Шубникова. ...

06 07 2021 14:28:24

ЯКУТСКАЯ ПОРОДА ЛОШАДЕЙ В ДРУГИХ РЕГИОНАХ РОССИИ

Статья в формате PDF 276 KB...

05 07 2021 0:33:34

БИОСФЕРА, БИОРИТМЫ, ЗДОРОВЬЕ

Статья в формате PDF 112 KB...

01 07 2021 18:44:23

СПАМ-ФИЛЬТРЫ И БЛОКИРАТОРЫ

Статья в формате PDF 276 KB...

27 06 2021 17:34:46

ОБЩИЙ УХОД ЗА БОЛЬНЫМИ (учебник)

Статья в формате PDF 107 KB...

20 06 2021 0:49:48

ЭКОНОМЕТРИЧЕСКОЕ МОДЕЛИРОВАНИЕ

Статья в формате PDF 345 KB...

17 06 2021 6:24:45

Еще:
Обзоры -1 :: Обзоры -2 :: Обзоры -3 :: Обзоры -4 :: Обзоры -5 :: Обзоры -6 :: Обзоры -7 :: Обзоры -8 :: Обзоры -9 :: Обзоры -10 :: Обзоры -11 ::

Последовательность подготовки научной работы может быть такой:

Выбор темы. Это важный этап. Во-первых, тема должна быть интересна не только вам, но и большинству слушателей, которым вы будете её докладывать, чтобы вы видели заинтересованность в их глазах, а не откровенную скуку.

Выбор целей и задач своей научной работы. То есть, нужно сузить тему. Например, тема: «Грудное вскармливание», сужение темы: «Грудное вскармливание среди студенток нашего ВУЗа». И если общая тема мало кому интересна, то суженная до рамок собственного института или университета, она становится интересной практически для всех слушателей. Целью может стать: «Содействие оптимальным условиям вскармливания грудью детей студентов нашего ВУЗа», а задачей — доказать, что специальные условия, созданные для кормящих студенток, не помешают их успеваемости, но уменьшат количество пропусков, академических отпусков и способствуют выращиванию здоровых детей — нашего будущего. Понятно, что эта тема подходит для студентов медицинских и педагогических ВУЗов, но и в других учебных учреждениях можно найти темы, интересные всем.

Разработать методы исследования и сбора информации. В случае с естественным вскармливанием, скорее всего, это будет анкетирование студенток, имеющих детей.

Систематизировать материал и подготовить презентацию.

Подготовиться к выступлению.

Выступить и получить: награду, удовольствие и опыт, чтобы в следующем году выступить ещё лучше и сорвать шквал аплодисментов, стать узнаваемым, а значит — более конкурентоспособным!