ПРОВЕРКА ЗАКОНА НОРМАЛЬНОГО РАСПРЕДЕЛЕНИЯ ФРАКТАЛЬНОЙ ФУНКЦИИ ВЕЙЕРШТРАССА-МАНДЕЛЬБРОТА > Научные обзоры
IT-Reviews    

ПРОВЕРКА ЗАКОНА НОРМАЛЬНОГО РАСПРЕДЕЛЕНИЯ ФРАКТАЛЬНОЙ ФУНКЦИИ ВЕЙЕРШТРАССА-МАНДЕЛЬБРОТА

Источник:
Седельников А.В. Корунтяева С.С. Чернышева С.В. Статья в формате PDF 128 KB В работе исследуется закон распределения действительной части фрактальной функции Вейерштрасса-Мандельброта (ФВМ) при нулевой фазе:

    (1)

Эта функция может быть использована при оценке уровня микроускорений на борту орбитального космического аппарата ( КА ) [1].

При полном отсутствии или слабом демпфировании собственных колебаний упругих элементов микроускорения можно рассматривать как случайную величину, а изменением числовых характеристик пренебречь [2]. В реальности для оценки уровня микроускорений, прежде всего, квазистатической его компоненты, исследователи ограничиваются рассмотрением первых нескольких форм колебаний упругих элементов КА, а это как раз рассматриваемый случай.

Прежде всего, необходимо выяснить в каком диапазоне параметров ФВМ также подходит под понятие случайной величины. При малых значениях фрактальной размерности D ФВМ значительно возрастает и, следовательно, может рассматриваться как случайный процесс. При D выше 1,99 роста функции не наблюдается. Исследования показывают, что в диапазоне фрактальной размерности 1,95

Диапазон изменений b выбирается, исходя из постановки задачи, которая более подробно изложена в работах [3, 4]. Здесь следует отметить лишь интересную особенность: при 0

,

где I - момент инерции КА, а R - расстояние от рассматриваемой точки до центра масс КА.

Вообще говоря микроускорения определяются еще и своей нормальной составляющей, но в силу того, что угловая скорость вращения КА входит туда во второй степени, нормальным ускорением можно пренебречь как существенно более малой величиной по сравнению с касательным ускорением.

Таким образом, для моделирования микроускорений подходит коридор изменения параметров ФВМ: 0

После выявления этого диапазона следует статистически построить закон распределения ФВМ. Исследование законов распределения начнем с самого простого предположения о гауссовом распределении, а для проверки этой гипотезы воспользуемся критерием согласия хи-квадрат Пирсона. При проверке значения ФВМ выбирались из интервала значений t от 0 до 1 с шагом . Т.е. анализировалась выборка, состоящая из 1000 точек, которая последовательно разбивалась на 4, 6, ... , 30 диапазонов. Причем, левая граница (4 диапазона) обусловлена предельно допустимой погрешностью построения теоретической функции плотности вероятности, а правая (30 диапазонов) - количеством точек в выборке. Точка ( 0; 0 ) не входила в анализ, ее выбраковываем как выброс. На каждом из значений параметров рабочего диапазона проверялась гипотеза о гауссовом распределении. Исследования показали, что во всех случаях, за единичными исключениями крайних (4 или 30) диапазонов критерий согласия не позволяет сделать вывод о том, что ФВМ подчиняется гауссовому закону распределения. Поэтому следует выдвигать и проверять гипотезы о более сложном, чем нормальный законе распределения ФВМ [5].

СПИСОК ЛИТЕРАТУРЫ

  1. Седельников А.В., Бязина А.В., Иванова С.А. Статистические исследования микроускорений при наличии слабого демпфирования колебаний упругих элементов КА //Сборник научных трудов в Самар­ском филиале УРАО. ч. 1. Самара. 2003. с. 137 - 158.
  2. Седельников А.В. Статистические исследования микроускорений как случайной величины //Фундаментальные исследования. №6. 2004. с. 123-124.
  3. Седельников А.В., Бязина А.В. Использование фракталов в математическом моделировании //Сборник научных трудов в Самар­ском филиале УРАО. вып. 2-3. Самара. 2002. с. 72 - 85.
  4. Седельников А.В. Исследование функции распределения уровня микроускорений во времени //Успехи современного естествознания. - 2004. - № 9. - с. 15-18.
  5. Седельников А.В., Бязина А.В. Исследование законов распределения микроускорений, смоделированных с помощью функции Вейерштрасса-Мандельброта и полученных в результате эксперимента //Современные проблемы механики и прикладной математики. - Сборник трудов международной школы-семинара. - Ч. 1. - т. 2. - Воронеж. - 2004. - с. 450-453.



Отзывы (через Facebook):

Оставить отзыв с помощью аккаунта FaceBook:


ИНЖЕНЕРНАЯ ГРАФИКА (электронное учебное пособие)

Статья в формате PDF 103 KB...

20 07 2021 15:31:36

Системный анализ онтогенеза надпочечников человека

Статья в формате PDF 102 KB...

19 07 2021 17:35:24

СТРОИТЕЛЬНАЯ АКУСТИКА

Статья в формате PDF 152 KB...

07 07 2021 21:31:33

БРИЛЛЬ ГРИГОРИЙ ЕФИМОВИЧ

Статья в формате PDF 452 KB...

04 07 2021 0:45:17

ОПРЕДЕЛЕНИЕ МОМЕНТА ТРЕНИЯ В ПОДШИПНИКАХ КАЧЕНИЯ

Статья в формате PDF 294 KB...

30 06 2021 20:52:10

ТЕОРИЯ ДОУ

Статья в формате PDF 424 KB...

27 06 2021 10:14:55

Проблема перевода слов – реалий

Статья в формате PDF 327 KB...

24 06 2021 5:37:13

Статистические закономерности хронологии космонавтики

В статье описана и исследована методами математической статистики хронологическая аномалия космонавтики. Обоснован биномиальный закон распределения числа хронологических совпадений. Показано, что вероятность случайного появления рассматриваемых совпадений весьма мала. Метод исследования, применяемый в работе, преимущественно основан на статистическом анализе хронологии при помощи параметризации дат событий и проверки соответствующего критериального свойства. Используются параметры: условные номера дней с начала летоисчисления N, с начала года n и год Г. Основными информативными параметрами являются интервалы времени между событиями. Обоснован биномиальный закон распределения числа хронологических совпадений. Показано, что вероятность случайного появления рассматриваемых совпадений весьма мала. ...

13 06 2021 23:39:29

ИНФОРМАЦИОННЫЙ АНАЛИЗ СПИННОМОЗГОВОЙ ЖИДКОСТИ

Статья в формате PDF 164 KB...

11 06 2021 18:58:26

САТУРАТОРЫ ИНЖЕКТОРНОГО ТИПА

Статья в формате PDF 91 KB...

06 06 2021 7:35:33

Еще:
Обзоры -1 :: Обзоры -2 :: Обзоры -3 :: Обзоры -4 :: Обзоры -5 :: Обзоры -6 :: Обзоры -7 :: Обзоры -8 :: Обзоры -9 :: Обзоры -10 :: Обзоры -11 ::

Последовательность подготовки научной работы может быть такой:

Выбор темы. Это важный этап. Во-первых, тема должна быть интересна не только вам, но и большинству слушателей, которым вы будете её докладывать, чтобы вы видели заинтересованность в их глазах, а не откровенную скуку.

Выбор целей и задач своей научной работы. То есть, нужно сузить тему. Например, тема: «Грудное вскармливание», сужение темы: «Грудное вскармливание среди студенток нашего ВУЗа». И если общая тема мало кому интересна, то суженная до рамок собственного института или университета, она становится интересной практически для всех слушателей. Целью может стать: «Содействие оптимальным условиям вскармливания грудью детей студентов нашего ВУЗа», а задачей — доказать, что специальные условия, созданные для кормящих студенток, не помешают их успеваемости, но уменьшат количество пропусков, академических отпусков и способствуют выращиванию здоровых детей — нашего будущего. Понятно, что эта тема подходит для студентов медицинских и педагогических ВУЗов, но и в других учебных учреждениях можно найти темы, интересные всем.

Разработать методы исследования и сбора информации. В случае с естественным вскармливанием, скорее всего, это будет анкетирование студенток, имеющих детей.

Систематизировать материал и подготовить презентацию.

Подготовиться к выступлению.

Выступить и получить: награду, удовольствие и опыт, чтобы в следующем году выступить ещё лучше и сорвать шквал аплодисментов, стать узнаваемым, а значит — более конкурентоспособным!